02.07.2019

Материалы технология производства и сборки. Технология сборки машин. План изложения материала


Раздел 6.

Технология сборки машин.

Урок 5

Тема: Основные понятия и определения.

Цели урока: дать основные понятия о принципах и методах сборки. Научиться составлять технологическую схему сборки.

План изложения материала:

1. Основные понятия и определения.

2. Методы сборки.

3. Стадии сборки.

4. Технологическая документация процесса сборки.

5. Технологическая схема сборки.

Задание на дом :

, «Технология изготовления деталей на станках с ЧПУ» М. Машиностроение, 1989г., стр. 221…233.

1. Основные понятия и определения.

Сборка является заключительным этапом в производственном процессе, предусматривающим получение готовых изделий из отдельных деталей и сборочных единиц путём их соединения. Любая машина состоит из отдельных, не поддающихся разборке частей – деталей, каждая из которых изготовлена из одного куска материала без каких-либо соединений. Детали бывают разнообразных форм и размеров. Иногда используются комбинированные детали: сварные и армированные. Основные определения и понятия, используемые при сборке.

Изделием в машиностроении называют предмет, подлежащий изготовлению на данном предприятии.

Установлены следующие виды изделий: деталь, сборочная единица, комплекс, комплект.

Деталь - изделие (составная часть), изготовленная из однородного по наименованию и марке материала без применения сборочных операций.

Сборочная единица (узел) - изделие, составные части которого соединяют на предприятии – изготовителе.

Технологическим признаком сборочной единицы является возможность её сборки обособленно от других элементов изделия. Она может включать в себя отдельные детали или составные части высших или низших порядков. Деление на составные части производится по технологическому признаку. Составная часть первого порядка входит непосредственно в составную часть изделия, составная часть второго порядка – в первую и т. д. Составная часть высшего порядка делится только на детали.

Комплекс – два или более специализированных изделий, не соединённых на предприятии – изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных эксплуатационных функций.

В комплекс могут входить кроме изделий детали, сборочные единицы и комплекты (например, запасных частей).

Комплект – два или более изделий, не соединённых на предприятии – изготовителе сборочными операциями и представляющих собой набор изделий, имеющих общее эксплуатационное назначение вспомогательного характера, например, комплект инструментов и т. д.

Сборка – это образование разъёмных или неразъёмных соединений, составных частей заготовки или изделия. По содержанию сборку делят на общую и узловую.

2. Методы сборки.

При соединении деталей машин в процессе сборки необходимо обеспечить их взаимное расположение в пределах заданной точности это достигается применением одного из следующих методов.

1. Полной взаимозаменяемости.

Этот принцип заключается в том, что любая деталь может быть поставлена на машину без каких либо пригоночных работ; точно также деталь, снятая с машины данной модели, должна без всякой пригонки подойти к любой такой же машине. Этот принцип применяется в массовом и крупносерийном производстве, т. к. при этом методе себестоимость изготовления деталей увеличивается, а сборки – уменьшается. Процесс сборки разбивают на ряд операций. Высокая квалификация рабочих необходима только на некоторых операциях, а на большинстве есть возможность использовать рабочих низкой квалификации.

2. Групповой взаимозаменяемости.

Сборка путём группового подбора деталей применяется тогда, когда по условиям работы соединения требуемый зазор или натяг настолько мал, что допуски основных размеров деталей, входящих в соединение, технологически выполнить трудно. В этом случае расширяют поля допусков размеров, а заданную точность соединения обеспечивают соответствующим подбором деталей. Этот вид сборки позволяет получить весьма точные соединения, его можно успешно применять, когда детали изготавливаются большими партиями. При этом методе детали сортируют на размерные группы в пределах одного и того же допуска. Например: собирается узел из двух деталей и посадка осуществляется путём установки вала в отверстие. Валы и детали, имеющие отверстия сортируют на группы. При сборке к деталям, имеющим максимальное значение отверстия, подбирают группу валов, имеющих максимальное значение наружного размера.

3. Пригонка.

Этот вид сборки применяют в единичном и мелкосерийном производствах, а также при экспериментальных работах. При механической обработке деталей расширяют поля допусков отдельных размеров. Получающаяся неточность компенсируется замыкающим размером детали, который будет изготавливаться по месту, т. е. пригоняться. Перед отправкой на общую сборку детали подвергаются ручной слесарной обработке для получения окончательной формы и размеров, после чего их пригоняют по месту опиливанием, пришабриванием, притиркой, шлифованием, развёртыванием и т. д. Пригонка является трудоёмкой операцией, требующей рабочих высокой квалификации.

4. Регулирование.

5. С помощью компенсирующих материалов.

Эти методы близки к методу пригонки и заключаются в том, что точность замыкающего звена достигается изменением значения компенсирующего звена без удаления слоя материала. При методе регулирования изменение значения компенсирующего звена осуществляют путём изменения положения одной из деталей или путём введения специальной детали требуемого размера. В первом случае такую деталь называют подвижным компенсатором, во втором – неподвижным. Подвижный компенсатор в виде втулки устанавливают в отверстие стенки корпуса и закрепляют, выдерживая требуемый зазор. Компенсатор является подвижным вследствие того, что в продольном направлении его можно установить в нужном положении, зафиксировав затем это положение стопорным винтом. При этом не требуется пригоночных работ. Широко распространены компенсаторы в виде мерных втулок, шайб, прокладочных колец. Этот метод применяется часто при регулировании подшипников.

3. Стадии сборки.

По стадиям сборку разделяют на:

1. предварительную (сборка заготовок);

2. промежуточную (сборка заготовок, выполняемая для их совместной обработки);

3. сборку под сварку;

4. окончательную (сборка, после которой не предусмотрена разборка).

По методу образования соединения различают слесарную сборку, монтаж, электромонтаж, сварку, пайку, клёпку, склеивание.

В зависимости от видов и условий производства применяют поточную и не поточную форму организации сборочных работ.

4. Технологическая документация процесса сборки.

К технологической документации относят: технологические карты сборки, технологические схемы узловой и общей сборки, карты маршрутной технологии, операционные карт, комплектовочные карты, карты оснастки сборки.

В условиях единичного производства вместо технологической карты используют технологические схемы сборки или карты маршрутной технологии и сборочные чертежи.

В серийном и массовом производстве следующий комплект документов: сборочный чертёж, технологические карты, комплектовочные карты и карты оснастки.

Техпроцесс сборки разрабатывают в следующей последовательности:

1) устанавливают организационную форму сборки, такт, ритм;

2) отработка конструкции на технологичность;

3) размерный анализ, выбор метода сборки;

4) определяют степень расчленения сборочного процесса;

5) устанавливают последовательность соединения и составляют схему сборки;

6) определяют способы соединения, определяют содержание операций, методы контроля и испытания;

7) разрабатывают необходимую оснастку;

8) нормируют;

9) оформляют документацию.

5. Составление технологической схемы сборки.

Для разработки ТП сборки составляют технологические схемы сборки. В этих схемах условно изображают последовательность сборки машины из элементов (деталей, групп или подгрупп). Схему сборки обычно составляют в соответствии со сборочным чертежом и спецификацией. Типовая схема разбивки изделия на сборочные элементы представлена на рисунке, где каждый элемент изображён в виде прямоугольника, внутри которого (или рядом с ним) пишется наименование и номер сборочного элемента, а иногда и трудоёмкость сборки. В технологических схемах подписывают название методов соединения там, где они не определены типом соединения деталей. Так указывают: «приварить», «запрессовать», «набить смазкой» (но не делают указание «заклепать», если показана установка заклёпки). На основе технологической схемы сборки разрабатывается технологический процесс, который, так же как процесс механической обработки, состоит из отдельных операций, которые в свою очередь расчленяются на более мелкие составные части – элементы технологического процесса при сборке. Рассмотрим примеры выполненных технологических схем сборки.

Технологическая схема сборки.

Закрепление материала

Порядок составления технологической схемы сборки разберём на примере узла, показанного в методическом пособии по проведению практической работы № 16.

Работу проведём в следующей последовательности:

1. Изучить сборочный чертеж, спецификацию и описание работы узла.

2. Установить последовательность сборки.

3. Составить технологическую схему сборки.

4. Сравнить составленную схему со схемой, показанной в методическом пособии.

5. При необходимости внести коррективы в составленную схему.

Урок 6

Практическая работа № 16.

Составление технологической схемы сборки

Урок 7

Тема: Сборка типовых соединений

Цели урока: разобрать последовательность сборки типовых соединений.

План изложения материала

1. Сборка подшипников.

2. Сборка зубчатых соединений.

3. Сборка резьбовых пар.

Задание на дом:

, «Технология изготовления деталей на станках с ЧПУ», М., Машиностроение,1989г., стр. 233…237.

1. Сборка подшипников.

Сборка подшипников включает установку внутренних и наружных колец, регулировку натяга, проверку и испытание. Внутренние кольца соединяют с валом по посадкам с натягом. Наружные кольца с корпусом соединяют по посадкам с зазором, переходным и посадкам с натягом при тяжелом режиме работы.

Этапы, предшествующие сборке подшипников :

1. Расконсервация. (непосредственно перед монтажом.)

2. Промывка. (6% раствор мыла в бензине или горячем антикоррозионном растворе.)

3. Контроль. (Визуально проверяют внешний вид, отсутствие коррозии, прижогов, трещин, повреждений, наличие маркировки, лёгкость вращения, размеры, радиальное и осевое биения, радиальный зазор и т. д.)

4. Выбор способа монтажа.

5. Предварительная регулировка. (устранение зазоров и создание предварительного натяга)

Способы монтажа подшипников:

· Запрессовка с помощью пресса или молотка.

· Запрессовка с помощью съёмника.

· Гидропрессовый метод

· Сборка с нагревом.

· Сборка с охлаждением.

Процесс сборки подшипников состоит из их установки, пригонки, укладки вала и по необходимости в регулировании опор.

2. Сборка зубчатых зацеплений.

Сборка зубчатых зацеплений с валами подразделяется на сборку зубчатых колёс на валу, установки валов с колёсами в корпус и регулировки их зацепления. Зубчатые колёса устанавливают на вал с зазором или с натягом вручную или с помощью пресса в холодном состоянии; при больших размерах колёс с нагревом колёс или с охлаждением вала. Нормальное зацепление зубчатых колёс обеспечивается правильным положением ведущего и ведомого валов в корпусе, т. е. при расположении их осей в одной плоскости, их параллельности и соблюдении межцентрового расстояния. Правильность положения валов осуществляется регулированием положения гнёзд под подшипники в корпусе.

Правильность зацепления проверяется по пятну контакта поверхностей зубьев с помощью краски. В передачах, работающих на средних скоростях пятно – 60…65% рабочей длины зуба. В передачах, работающих на высоких скоростях – 70…80%.

В конических передачах правильность заце6пления регулируется перемещением вдоль осей одного или обоих зубчатых колёс. Боковой зазор контролируется щупом, краской, пластиной и регулируется мерными шайбами.

При сборке червячных передач особое значение имеют правильное расположение оси червяка и червячного колеса, боковой зазор и пятна касания (не меньше 65…70% от рабочей длины зуба).

3. Сборка резьбовых пар.

Качество сборки резьбовых пар зависит от правильной затяжки болтов и гаек, от чистоты поверхности и перпендикулярности торца гайки или болта и бобышки под них. Перекос гайки может вызвать обрыв болта.

Сборку болтовых соединений следует производить завинчиванием от руки до соприкосновения болта с деталью, а затем постепенно завинчивать болт ключом до полной затяжки. Длина рукоятки ключа не должна превышать 15 диаметров резьбы, что обеспечивает нормальную затяжку и предотвращает срыв резьбы. При большом количестве болтовых соединений вначале затягивают гайки, расположенные посередине, а затем по концам детали. При большом количестве болтовых соединений по окружности затягивают гайки крест накрест.

Существует ряд способов затяжки гаек, обеспечивающих достаточную плотность соединения:

· затяжка с замером удлинения болта (шпильки);

· затяжка с замером угла поворота гайки;

· затяжка тарированным ключом на величину крутящего момента.

Сборка резьбовых пар.

Винтовое соединение. Болтовое соединение.

Монтажные работы" href="/text/category/montazhnie_raboti/" rel="bookmark">монтажные работы и работы, связанные с разборкой изделия. При нормировании границей расчленения ТП обычно служит сборочная единица, т. е. комплект, который хранится, перемещается и подаётся на дальнейшую сборку как единое целое (с одного рабочего места на другое). Расчленение операции является необходимым условием нормирования и изучения ручного труда.

В слесарно-сборочных работах трудовые приёмы, как основные (соединение или изменение размеров), так и вспомогательные (перемещение деталей и т. д.), являются ручными, поэтому при нормировании оперативное время не подразделяется на основное и вспомогательное.

Выбор методов и способа нормирования производят в зависимости от того, с какой степенью точности и обоснованности должна быть установлена норма. При этом учитывают тип производства, в котором выполняется работа .

При массовом и крупносерийном производстве ТП разрабатывается подробно, каждый вид работы закреплён за конкретным рабочим местом, используют аналитический метод расчёта норм времени.

В серийном производстве при применении универсального и специализированного оборудования применяют укрупнённые нормативы времени.

В мелкосерийном и единичном производстве при использовании универсального оснащения, маршрутного ТП нормирование производят по типовым нормам методом сравнения или хронометража.

Норма штучного времени на сборочную операцию рассчитывается по формуле:

где m – число i-х расчётных комплексов в операции;

Нормированное время на выполнение расчётного комплекса приёмов;

Суммарный поправочный коэффициент i – му комплексу приёмов в зависимости от характера и условий выполняемой работы;

К" – коэффициент, учитывающий тип производства.

2. Пример расчёта.

Исходные данные:

Работа выполняется на месте сборки агрегата при ограничении вращения гаечного ключа. Производство среднесерийное, партия сборки 200 изделий. Количество и характеристика собираемых деталей: корпус цилиндра – один, уплотнитель D = 18 мм – один, штуцер М181,5, L = 20 мм – один.

https://pandia.ru/text/78/011/images/image010_52.gif" height="23">= 0,15 мин. Содержание расчётного комплекса (б) включает: взять штуцер, ввернуть предварительно вручную, взять ключ и завернуть окончательно, отложить ключ. По нормативам t= 0,3 мин. В условиях ограниченного движения инструмента вводится поправочный коэффициент 1,4. Тогда t=0,3https://pandia.ru/text/78/011/images/image013_38.gif" width="15 height=24" height="24">=1,5%, а=2,5%, аhttps://pandia.ru/text/78/011/images/image016_26.gif" width="12" height="24 src=">=(0,15+0,42){1+(1,5+2,5+1)/100}0,9=(0,15+0,42)1,050,9=0,54 (мин)

5. При повышенных требованиях к точности расчёта можно пользоваться аналитическими формулами.

Сборочные работы, в зависимости от типа производства, составляют от 20 до 40% общей трудоемкости изготовления машины. Эти работы обычно требуют значительных затрат физического труда слесарей сборщиков. Если в условиях массового производства, например, автомобилей широко применяются средства автоматизации и мехагн изации сборочных процессов, то в индивидуальном и мелкосерийном производстве, особенно при создании уникальной техники, экспериментальных экземпляров новых машин проблемы автоматизации сборочных работ практически не решены.

В зависимости от типа производства и вида изделия сборка может быть организована различным способом.

При массовом производстве наиболее эффективной является подвижная поточная сборка, при которой изделие перемещается по специализированным рабочим местам, где выполняются простейшие сборочные операции. Такие места могут быть оснащены специальными средствами механизации или быть полностью автоматизированы. (При такой форме организации сборки выпускают изделия бытовой техники, компьютеры, боеприпасы…). Такую форму организации сборки предложил Генри Форд, решая задачу массового выпуска автомобилей. При сборке автомобиля количество сборочных операций довольно велико, поэтому длина такого конвейера составляет сотни метров, а с учетом конвейеров сборки отдельных узлов автомобиля – многие километры. Конечно, внутри производственных зданий такие конвейеры располагается во много рядов и на нескольких уровнях по высоте. В то же время продолжительность элементарных сборочных операций при сборке автомобиля составляет не более нескольких минут, что позволяет обеспечить малый такт выпуска изделия. (обычно с конвейера, менее чем через минуту, сходит собранный автомобиль).

При производстве крупногабаритных изделий (электрогенераторов, турбин, самолетов, судов, станков…) применяют поточную стационарную сборку. В этом случае изделия, находящиеся в различных стадиях сборки, располагаются неподвижно, на специальных стапелях, а специализированные рабочие места (бригады рабочих с соответствующим оборудованием) перемещаются от изделия к изделию, производя соответствующие сборочные операции.

В условиях единичного и мелкосерийного производства такие виды сборки экономически неоправданы и сборка обычно выполняется бригадами высококвалифицированных специалистов, производящих все действия по сборке, регулировке и требуемым испытаниям. При этом трудоемкость сборки и продолжительность существенно выше. Так постройка подводной лодки по индивидуальному проекту может занимать до нескольких лет. Во время же второй мировой войны поточная сборка подводных лодок позволяла Германии выпускать одну подводную лодку в день, в США же производилось в день до нескольких судов водоизмещением 10000т.

Сборка заключается в соединении сопрягаемых сборочных единиц и деталей путем приведения в соприкосновение основных баз – сопрягаемых поверхностей. Такие поверхности определяют положение деталей относительно друг друга, выполняются с наибольшей точностью и определяют во многом качество машины. Так суппорт токарного станка устанавливается на направляющих поверхностях станины и может перемещаться по ним в одном направлении. От точности этих поверхностей станины будет зависеть точность (прямолинейность) перемещения суппорта – одна из важнейших характеристик качества станка.

В процессе сборки детали соединяется неподвижно или подвижно относительно друг друга. Такие соединения могут быть разъемными, когда соединение можно разобрать, например, для замены детали, узла (соединения по подвижным и переходным посадкам, резьбовые) и неразъемными, когда разборка невозможна без разрушения какого либо элемента (заклепочные, сварные, клеевые…).

В процессе сборки требуется производить ряд специфических операций, которые требуют затрат энергии и имеют определенную временную протяженность, уменьшение которой, также как и при обработке деталей, наталкивается на физические ограничение.

Конечно время завертывания винта можно уменьшить, повысив скорость вращения специального инструмента, но возникающие динамические нагрузки, при определенной скорости, приведут к разрушению либо винта, либо резьбы. Автомобилистам известно, что время завинчивания винта для крепления колеса вручную доходит до 1 минуты, с применением же специального механизированного инструмента на автомобильном заводе время завинчивания всех четырех винтов не превышает 1 секунды, т.е. уменьшено до предела.

Время же реализации таких соединений как сварное, клеевое определяются особенностями протекания теплофизических, металлургических, химических процессов.

Сложность современных машин (количество деталей самолета, судна может достигать нескольких миллионов) определяла бы очень большую продолжительность процесса последовательной сборки деталь за деталью.

Поэтому сборку ведут параллельно во времени собирая узлы изделия, группы деталей, которые монтируют на базовую деталь (или узел). Так собранная турбина устанавливается в корпус корабля, причем одновременнов корпус могут монтироваться и управляющая аппаратура, вооружение (пушки, ракетные установки и т.д.). В корпус самолета (планер) устанавливается собранный двигатель, который обычно и производится даже на другом предприятии.

Узел машины это сборочная единица, которая имеет самостоятельные функции, которые могут быть испытаны вне машины. Например, топливный насос, масляный фильтр и т.д. В соответствии с этим узлы могут быть унифицированы, производиться самостоятельно и применяться в различных машинах. Сборочные единицы, называемые группами, обычно самостоятельных функций не имеют и выделяются из общей сборки по принципу удобства соединения деталей в группу в отдельном процессе, с целью сокращения общего времени сборки машины.

Для построения технологического процесса сборки технологами производится анализ конструкции машины для выявления составляющих ее узлов, деталей, возможности вычленения групп деталей сборка которых возможна отдельно. Конечно, при проектировании машины конструктор должен уделять внимание технологичности машины, возможности сборки ее в параллельных во времени процессах. Если машина спроектирована неправильно, то никакие усилия технолога по оптимизации технологии ее изготовления не приведут к положительным результатам.

Поэтому конструктор при проектировании машины должен руководствоваться определенными стандартными правилами.

Так требования к составу сборочной единицы предполагают:

    расчленеие ее на рационалтьное число частей с учетом принципа агрегатирования;

    виды используемых соединений деталей и узлов должны позволять автоматизацию или механизацию сборочных работ;

    сборка изделия не должна предполагать применения сложного технологического оснащения;

    конструкция сборочной единицы должна предусматривать базовую составную часть, которая является основой для расположения других составных частей; , и т.д.

Среди многих требований, обеспечивающих технологичность машины, наибольшее значение имеет требование взаимозаменяемости всех ее узлов и деталей. Принцип взаимозаменяемости, закладываемый при проектировании искусственных объектов, не используется природой. Как известно, каждый природный организм уникален и приходится предпринимать специальные усилия в случае замены отдельных частей живых организмов. На первом этапе развития машинного производства, вплоть до начала 20-го века многие машины создавались в процессе пригонки отдельных деталей друг к другу. Например, размеры шеек вала задавались в виде номинальных. Без регламентации допуска на изготовление, а размер подшипниковой втулки задавался с требованием выполнить его по полученной шейке вала с определенным зазором. В этих условиях изготовить подшипниковую втулку можно было только после изготовления вала. Это увеличивало цикл изготовления машины и не позволяло производить ее ремонт с использованием запасных частей. Хотя принцип взаимозаменяемости был известен со средних веков, и даже был внедрен при производстве огнестрельного оружия еще по указу Петра 1, появление первых стандартов и его широкое применение относится именно к началу 20-го века. Несмотря на кажущуюся эффективность взаимозаменяемости применение этого принципа имеет ряд ограничений, так как в ряде случаев значительно удорожает изготовление машины. Это связано с тем, что качество функционирования отдельных узлов и машины в целом зависит от отклонений замыкающих звеньев, которые определяются допускаемыми отклонениями всех входящих в размерную цепь звеньев

Так в роликовом подшипнике качения должен быть зазор Зр между роликами 1 и кольцами 2 и 3, что обеспечивает свободу движения подшипника. В то же время большая величина этого зазора резко снижает качество подшипника, так как приводит к «болтанке» установленного в нем вала, значительным динамическим нагрузкам (ударам), нарушает точность кинематических связей деталей, установленных на валу с другими деталями машины. Но этот зазор возникает в процессе сборки подшипника и зависит от точности изготовления его деталей, причем максимальная и минимальная, возможная величина этого зазора равны: Зр макс = (Дкн макс – Дкв мин – Др мин)/2

Зр мин = (Дкн мин - Дкв макс – Др макс)/2

Для повышения качества подшипников колебания зазора стремяться свести к минимуму, но это требует чрезвычайно точного выполнения всех его деталей, что привело бы к значительному (на порядки) его удорожанию. Поэтому, даже в этом простейшем случае, от принципа полной взаимозаменяемости приходится отказываться и применять так называемую селективную (с использованием отбора) сборку. В этом случае допуски на изготовление отдельных деталей можно расширить, но потом, перед сборкой детали сортируют на отдельные группы, подбирая в этих группах истинные размеры так, чтобы при сборке получить минимальные колебания зазоров в подшипниках. Естественно, что часть (по теории вероятности очень малая) деталей не найдет себе применения, но эти потери с лихвой окупятся за счет снижения точности обработки отдельных элементов.

В реальных машинах размерные цепи могут состоять из десятков взаимосвязанных размеров и полная взаимозаменяемость, часто не только экономически не оправдана, а даже невозможна. Поэтому, на практике, при сборке машин применяют не только метод подбора, но и метод пригонки, когда отдельные элементы обрабатывают «по месту» с учетом требуемых размеров замыкающего звена.

Методы достижения точности замыкающих размеров размерных и кинематических цепей при сборке машин в соответствии со стандартами подразделяются:

    метод полной взаимозаменяемости, основанный на расчете размеров замыкающего звена по максимальным и минимальным допустимым размерам составляющих размерную цепь звеньев (метод макимум минимум). Этот м етод обеспечивает полную взаимозаменяемость, но требует довольно точного выполнения размеров составляющих звеньев (деталей) и применим в массовом и крупносерийном производстве, когда число размеров, входящих в размерную цепь невелико.

    При методе неполной взаимозаменяемосьти допуски на размеры составляющих звеньев расширяют (чтобы удешевить производство деталей), По теории вероятностей отклонения размеров составляющих звеньев (реальных деталей) на практике при сборке могут компенсировать друг друга (детали с отклонениями в большую сторону с деталями имеющими отклонения в меньшую сторону. Кроме того, размеры с отклонениями близкими к центру поля допуска встречаются значительно чаще, чем с крайними предельными отклонениями. Такой принцип обеспечения взаимозаменяемости рационально применять в серийном и массовом производстве, при сложных многозвенных размерных цепях.

    Метод групповой взаимозаменяемости применяют при создании соединенийвысокой точности, когда полная взаимозаменяемость либо недостижима, либо связана с чрезвычайно большими затратами. В этом случае детали изготавливают по расширенным допускам, а потом сортируют на группы (например, при производстве подшипников качения). Такая сборка целесообразна в массовом и крупносерийном производстве.

    Сборка методом пригонки трудоемка и применяется в единичном и мелкосерийном производстве. Метод регулирования снижает трудоемкость пригонки и требует применения в конструкции специальных регулирующих устройств, которые могут несколько усложнять конструкцию машины.

Машина, состоящая из множества деталей, которые группируются в узлы, подузлы, группы деталей может быть собрана множеством способов, вплоть до последовательной сборки «деталь за деталью».

Выбор же оптимального технологического процесса является сложной задачей, для решения которой приходится применять многие математические методы (линейное и нелинейное программирование, теорию массового обслуживания и т.д.). Причем оптимизация технологии сборки требует построения целевой функции в качестве которой может использоваться минимальная себестоимость изделия, время производства изделия или различные комбинации этих функций.

При построении технологического процесса сборки машины используется ряд практических правил, суммирующих накопленный производственный опыт. Общая сборка машины начинается с установки базирующей детали или базирующей сборочной единицы машины, роль которой обычно выполняет корпусная деталь. Это может быть рама, станина, корпус, основание и т.д.

Базирующую деталь устанавливают или закрепляют в удобном для сборки положении. Иногда эту деталь закрепляют в специальном приспособлении, которое либо увеличивает жесткость детали, либо позволяет ее поворачивать или перемещать требуемым при сборке способом.

При поточной подвижной сборки это приспособление, зачастую, перемещается вместе с изделием до завершения процесса сборки. Иногда же оно позволяет закреплять изделие до окончания процесса сборки и перемещать собранное изделие в рабочую среду (судостроительный стапель).

При сборке отдельных узлов также выявляется базовая деталь, которую принимают за основу при сборке узла.

При разработке процесса сборки необходимо учитывать доступность места сборки, поэтому, в первую очередь, устанавливают узлы и детали, минимально затрудняющие установку последующих узлов и деталей. При этом необходимо учитывать возможность размещения монтажного инструмента.

Следует подчеркнуть, что несмотря на широкие возможности комбинаторики в выборе технологического процесса сборки машины, возможности качественной, производительной сборки закладываются на стадии проектирования конструктором. Разработанную последовательность сборки машины изображают в виде графической схемы сборки (рис.2). На схему общей сборки наносятся условные обозначения деталей и сборочных единиц, поступающих на общую сборку. Схема наглядно показывает в какой последовательности на базовую деталь устанавливаются узлы и детали. Нарушение последовательности, предусмотренной этой схемой недопустимо.

Кажется очевидным, что разборку машины можно произвести в обратном порядке, однако в процессе сборки могут применяться неразъемные соединения. Целью же разборки может быть дефектация машины после испытаний, упаковка для отправки заказчику, в тех случаях, когда разобранная машина более транспортабельна, ремонт. Поэтому для разборки машины составляются специальные схемы, соответствующие целям разборки.

Такое схематическое представление технологического процесса сборки отличается наглядностью и, зная продолжительность и стоимость выполнения отдельных операций сборки, можно легко оценить время сборки машины и стоимость процесса. При определении времени выполнения отдельных операций сборки, производимых с применением ручного труда, используются статистические экспериментальные оценки. При этом, конечно, определение норм времени должно производиться с учетом средних возможностей слесарей сборщиков.

Трудоемкость процессов сборки обуславливает разработку средств ее механизации и автоматизации. В настоящее время, особенно в условиях массового и крупносерийного производства широко применяются промышленные роботы, позволяющие в ряде случаев полностью освободить человека от выполнения сборочных операций. Возможности промышленных роботов, хотя и совершенствуются с каждым годом, но до настоящего времени значительно уступают возможностям человека. Поэтому изделия для автоматической сборки, зачастую, проектируют, учитывая достигнутые возможности автоматизации сборочных процессов. Так, многие резьбовые соединения оказалось целесообразным переводить на сварные, клеевые, заклепочные, которые значительно проще выполняются автоматами. В то же время ремонтопригодность таких изделий значительно снижается.

Многие знают, что в настоящее время при ремонте бытовой техники, оказывается рациональным заменять целые агрегаты, ремонт которых либо невозможен, либо экономически неоправдан.

Высокий уровень автоматизации сборочных операций достигнут в настоящее время только в условиях массового и крупносерийного производства, хотя требования рынка определяют необходимость выпуска изделий максимально удовлетворяющих индивидуальным требованиям потребителя. Так известно, что обладание людьми одинаковыми вещами, вызывает чувство некоторого дискомфорта. Производство же отличающихся друг от друга вещей в условиях поточного производства существенно усложняет технологические задачи. Первые попытки, решить эту проблему, предприняты на заводах, производящих автомобили Мерседес. В настоящее время их собирают в условиях максимально автоматизированной поточной сборки, по индивидуальным заказам, когда входящие в сборку узлы могут варьироваться исходя из требований заказчика. Так определенный кузов может оснащаться теми или иными сидениями, радиоэлектронным оборудованием и т.д. Это требует решения сложнейших задач логистики, которое стало возможным при применении современных средств вычислительной техники.

Вопросы для самопроверки:

    Виды организационных форм процессов сборки машин.

    На какие элементы может разделяться конструкция в процессе ее изготовления?

    Какие виды соединений применяются при сборке машин?

    В каком типе производства рационально применять поточную стационарную сборку?

    Какие ȔȍȚȖȌȣ ȌȖșȚȐȎȍȕȐȧ ȚȖȟȕȖșȚȐ ȏȈȔȣȒȈȦȡȐȝ ȘȈȏȔȍȘȖȊ ȘȈȏȔȍȘȕȣȝ Ȑ

ȒȐȕȍȔȈȚȐȟȍșȒȐȝȞȍȗȍȑǪȣȏȕȈȍȚȍ?

    ǪȒȈȒȐȝșȓțȟȈȧȝȕȍȘȈȞȐȖȕȈȓȤȕȖȐșȗȖȓȤȏȖȊȈȚȤȔȍȚȖȌȗȖȓȕȖȑȊȏȈȐȔȖȏȈȔȍȕȧȍȔȖșȚȐ?

    Перечислите методы снижения трудоемкости процессов сборки машин.

Образец карты тестового контроля:

    Какие технологии применяются при сборке машин?

а). Свинчивание, склеивание, сварка.

б). Сверление, долбление, притирка.

в). Пригонка, опиливание, шабрение, распиливание.

    В каких случаях производят сборку с пригонкой деталей друг по другу? А). При изготовлении особо точных машин и приборов.

Б) При изготовлении крупногабаритных конструкций.

В) При изготовлении оптических приборов.

Сборка является заключительным этапом при изготовлении машин. Объем работ при сборке в автомобилестроении составляет до 20% от об­щей трудоемкости изготовления автомобиля.

Технологический процесс сборки - это совокупность операций по со­единению деталей в определенной последовательности с целью получить изделие, отвечающее заданным эксплуатационным требованиям.

Изделие состоит из основных частей, роль которых могут выполнять детали, сборочные единицы, комплексы, комплекты.

Сборочная единица - часть изделия, составные части которой подле­жат соединению между собой на сборочных операциях на предприятии-изготовителе. Её характерной особенностью является возможность сборки обособленно от других элементов изделия. Сборочная единица изделия в зависимости от конструкции может собираться либо из отдельных деталей, либо из сборочных единиц высших порядков и деталей. Различают сбороч­ные единицы первого, второго и более высоких порядков. Сборочная еди­ница первого порядка входит непосредственно в изделие. Она состоит либо из отдельных деталей, либо из одной или нескольких сборочных единиц второго порядка и деталей и т.д. Сборочную единицу наивысшего порядка расчленяют только на детали. Сборочные единицы называют на практике узлами или группами.

Сборочная операция - это технологическая операция установки и об­разования соединений сборочных единиц изделия. Сборку начинают с ус­тановки и закрепления базовой детали. Поэтому в каждой сборочной еди­нице должна быть найдена базовая деталь - это деталь, с которой начинают сборку изделия, присоединяя к ней детали и другие сборочные единицы.

По последовательности выполнения различают:

Промежуточную сборку - это сборка мелких элементов на механических участках или сборка 2-х деталей перед окончательной обработкой;

Узловую сборку - это сборка сборочных единиц изделия;

Общую сборку - это сборка изделия в целом.

По наличию перемещений собираемых изделий различают:

Стационарную сборку - это сборка изделия или основной его части на од­ном рабочем месте;

Подвижную сборку - собираемое изделие перемещается по конвейеру.

По организации производства различают:

Поточную сборку, - которая предусматривает разделение технологического процесса на отдельные технологические операции, продолжительность ко­торых не превышает такта выпуска изделия;

Групповую сборку, - которая предусматривает возможность сборки раз­личных однотипных изделий на одном рабочем месте.

По степени подвижности различают подвижные и неподвижные со­единения.

Подвижные соединения обладают возможностью относительного пе­ремещения в рабочем состоянии в соответствии с кинематической схемой механизма. При этом используются посадки с зазором. Для сборки не тре­буется значительных усилий.

Неподвижные соединения не позволяют перемещаться друг относи­тельно друга соединяемым деталям. В неподвижных соединениях используются переходные посадки или посадки с натягом.

По характеру разбираемости соединения подразделяют на разъемные и неразъемные.

Разъемные соединения могут быть полностью разобраны без повре­ждения соединяемых деталей.

Неразъемные соединения собираются при помощи прессовых поса­док, сварки, пайки, склеивания и т.д. Без повреждения собираемых деталей их разобрать невозможно.

Методы сборки - определяются конструктором изделия путем про­становки допусков сопрягаемых деталей.

При сборке всегда происходит материализация заложенных конст­руктором размерных цепей.

Метод полной взаимозаменяемости - позволяет проводить сборку из­делия без какого-либо подбора или дополнительной обработки деталей. Метод наименее трудоемок, но необходимо увеличить затраты на механи­ческую обработку.

ТЕХНОЛОГИЯ СБОРКИ ИЗДЕЛИЙ И ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ

Технология сборочных процессов

10.1. Значение сборки при изготовлении машин

Сборка является заключительным этапом изготовления машин и в значительной степени определяет ее эксплуатационные качества. Одни и те же детали, соединенные при разных условиях сборки, могут значительно изменять долговечность их службы.

Сборочные работы составляют значительную долю общей трудоемкости изготовления машины. В зависимости от типа производства трудоемкость сборки составляет от (20...30)% в массовом и до (30...40)% в единичном производстве. Основная часть слесарно-сборочных работ представляет собой ручные работы, требующие больших затрат физического труда и высокой квалификации рабочих.

Вышеизложенное показывает, что при изготовлении машины сборке принадлежит ведущая роль. Технологические процессы изготовления деталей в большинстве случаев подчинены технологии сборки машины. Следовательно. сначала должна разрабатываться технология сборки машины, а затем - технология изготовления деталей.

10.2. Основные виды сборочных соединений

Сборка - это образование соединении составных частей изделия. Соединения могут быть разъемными или неразъемными. Различают следующие виды соединений:

Неподвижные разъемные;

Неподвижные неразъемные;

Подвижные разъемные;

Подвижные неразъемные.

Разъемные соединения допускают разборку без повреждения сопрягаемых и скрепляемых деталей. Неразъемные соединения - такие, разъединение которых связано с повреждением или разрушением деталей.

К неподвижным разъемным соединениям относят: резьбовые, шпоночные, некоторые шлицевые, конические, штифтовые, профильные, соединения с переходными посадками.

К неподвижным неразъемным соединениям относят соединения, которые получают посадкой с гарантированным натягом, развальцовкой, отбортовкои. сваркой, пайкой,клепкой,склеиванием.

К подвижным разъемным соединениям относят соединения с подвижной посадкой.

К подвижным неразъемным соединениям относят подшипники качения, втулочно-роликовые цепи, запорные краны.

10.3. Исходные данные для проектирования технологических процессов сборки

Технологический процесс сборки представляет собой часть производственного процесса, содержащая действия по установке и образованию соединений составных частей изделия (ГОСТ 23887-79).

Исходными данными для технологического процесса сборки являются:

Описание изделия и его служебное назначение;

Сборочные чертежи изделия, чертежи сборочных единиц, спецификации деталей, входящих в изделие;

Рабочие чертежи деталей, входящих в изделие;

Объем выпуска изделий.

При проектировании технологического процесса для действующего предприятия необходимы дополнительные данные о сборочном производстве:

Возможность использования имеющихся средств технологического оснащения, целесообразность их приобретения или изготовления,

Местонахождение предприятия (для решения вопросов по специализации и кооперированию, снабжению);

Наличие и перспективы подготовки кадров;

Плановые сроки подготовки освоения и выпуска изделия. Кроме изложенных выше данных необходима руководящая и справочная информация: паспортные данные оборудования и его технологические возможности, нормативы времени и режимов, стандарты на оснастку и т.д.

10.4. Этапы и последовательность проектирования технологического процесса сборки

Технологический процесс сборки разрабатывают в следующей последовательности:

Установление серийности и целесообразности организационной формы сборки, определение ее такта и ритма;

Анализ сборочных чертежей на технологичность конструкции;

Выбор метода достижения точности сборки на основе анализа и расчета размерных цепей (полная, неполная, групповая взаимозаменяемость, регулировка, пригонка);

Определение целесообразной степени дифференциации или концентрации сборочных операций;

Установление последовательности сборки, составление схемы общей сборки и сборки отдельных сборочных единиц;

Выбор способа сборки, контроля и испытаний;

Выбор технологического оборудования и оснастки, проектирование специальных средств технологического оснащения (при необходимости);

Нормирование сборочных работ;

Расчет экономических показателей сборки;

Разработка планировки оборудования и рабочих мест;

Оформление технологической документации.

10.5. Организационные формы сборки

В зависимости от условий, типа и организации производства сборка может иметь различные организационные формы (рис. 10.1).

По перемещению собираемого изделия сборка подразделяется на стационарную и подвижную, по организации производства- на непоточную и поточную.

Непоточная стационарная сборка отличается тем, что весь процесс сборки выполняется на одном рабочем месте, куда поступают все детали и сборочные единицы. Стационарная сборка может осуществляться без расчленения (принцип концентрации) и с расчленением (принцип дифференциации) сборочных операций.

В первом случае вся сборка изделия выполняется одной бригадой рабочих последовательно. Область применения стационарной неподвижной сборки без расчленения работ - единичное и мелкосерийное производство тяжелого машиностроения, экспериментальные и ремонтные цехи.

Во втором случае производится параллельно сборка каждой сборочной единицы и общая сборка разными бригадами. Непоточная стационарная сборка с расчленением сборочных работ применяется в серийном производстве средних и крупных машин и имеет ряд преимуществ перед сборкой без расчленения: сокращаются длительность цикла сборки, трудоемкость и снижается себестоимость. Однако применение сборки с расчленением возможно, только если конструкция изделия позволяет разделить его на сборочные единицы, которые могут быть собраны независимо друг от друга.

Непоточная подвижная сборка отличается тем, что рабочие, выполняющие операции сборки, находятся на своих рабочих местах, а собираемое изделие перемещается от одного рабочего места к другому. Перемещение изделий может быть свободным или принудительным. Организация подвижной сборки возможна только на основе расчленения сборочных работ. Продолжительность выполнения каждой операции сборочного процесса неодинакова. Для компенсации разности времени выполнения операций создаются межоперационные заделы. Непоточная подвижная сборка применяется в среднесерийном производстве.

Поточная сборка отличается тем, что все сборочные операции выполняются за одинаковое время, равное или кратное такту. Обеспечение одинаковой продолжительности операции достигается их перестройкой, заключающейся в изменении числа переходов, их механизации, дублировании и т.п.

Поточная сборка по аналогии с непоточной может осуществляться со свободным или принудительным перемещением собираемого изделия. При свободном перемещении используются тележки, наклонные лотки, рольганги, при принудительном - конвейеры различных типов. Сборка с принудительным перемещением может производиться на конвейере с периодическим или непрерывным перемещением.

Поточная стационарная сборка отличается тем, что собираемые изделия остаются на рабочих местах, а рабочие по сигналу переходят от одних собираемых изделий к следующим через периоды времени, равные такту. При этом каждый рабочий (или каждая бригада) выполняет закрепленную за ним (бригадой) одну и ту же операцию. Поточная стационарная сборка применяется в серийном производстве машин, отличающихся недостаточной жесткостью базовых деталей, большими габаритами и массой, что неудобно для их транспортирования.

Поточная подвижная сборка осуществляется путем перемещения собираемого изделия от одного рабочего места к другому. При этом перемещение собираемого изделия может производиться на непрерывно движущемся конвейере или на конвейере с периодическим перемещением.

В первом случае сборка осуществляется в период остановки конвейера, во втором - на непрерывно движущемся конвейере, перемещающем собираемое изделие со скоростью, обеспечивающей возможность выполнения сборочных операций. Подвижная поточная сборка применяется в крупносерийном и массовом производстве.

10.6. Технологический анализ сборочных чертежей

На данном этапе анализируется конструкции сборочных единиц с точки зрения их технологичности. На основе анализа конструкции изделия вырабатываются предложения по его конструктивным изменениям, упрощающим сборку.

Требования к технологичности сборочных конструкций можно разделить на общие и специальные.

К общим относят следующие требования:

1. Следует предусматривать разделение изделия на самостоятельные сборочные единицы, допускающие независимую сборку, контроль и испытание. Это позволит производить параллельную сборку отдельных сборочных единиц и сократить производственный цикл сборки.

2. Сборочные единицы должны состоять из стандартных и унифицированных частей, что приводит к увеличению серийности и снижению трудоемкости их изготовления.

3. В конструкции сборочной единицы следует предусматривать возможность общей сборки без промежуточной разборки.

4. Предусматривать простоту замены быстроизнашиваемых частей.

5. Конструкция должна обеспечивать удобные сборочные работы с применением целесообразных средств технологического оснащения, средств механизации и автоматизации, исключать сложные сборочные приспособления. Базовая деталь должна иметь технологическую базу, обеспечивающую достаточную устойчивость собираемого изделия.

6. Минимальное число поверхностей и мест соединений составных частей.

7. Конструкция составных частей должна исключать дополнительную обработку и сокращать пригоночные работы.

8. Уменьшать количество деталей и составных частей и стремиться к их взаимозаменяемости.

9. Нормализация крепежных и других деталей для сокращения номенклатуры сборочных инструментов.

10. Возможность захвата сборочных единиц грузоподъемными устройствами для транспортировки и установки на собираемое изделие.

11. Для соблюдения принципа взаимозаменяемости избегать многозвенных размерных цепей, которые сужают допуски. Если сократить число звеньев невозможно, то в конструкции изделия предусмотреть компенсатор.

12. Для сокращения цикла сборки предусмотреть возможность одновременного и независимого друг от друга присоединения различных сборочных единиц к базовой детали изделия.

13. В тех случаях, когда по условиям сборки важно обеспечить определенное и единственно возможное относительное положение собираемых элементов в изделии, необходимо предусмотреть установочные метки, контрольные штифты или несимметричное размещение крепежных деталей для исключения субъективных ошибок при сборке или ремонте.

14. Предусмотреть возможность механизации и автоматизации сборочных работ.

В качестве примера специальных требований ниже приведена технологичность разъемных и неразъемных соединений.

1. При сборке соединений с гарантированным зазором и натягом вводить заходные фаски на наружной и внутренней поверхности и направляющие элементы (пояски) для устранения перекоса.

2. Для обеспечения сборки по двум поверхностям следует соединять их последовательно-параллельно. Поверхности сопряжения во избежание задиров выполнять ступенчатыми.

3. Центровку деталей большого размера (крышки и фланцы) по цилиндрическим пояскам заменять центровкой по двум контрольным штифтам.

4. Сборку резьбовых соединений облегчать заходными фасками или направляющими элементами на резьбовых поверхностях.

5. Предусматривать достаточное расстояние от оси резьбового элемента до стенки для возможности применения торцевых ключей, обеспечивающих большую производительность.

6. Расстояние между резьбовыми элементами должны быть достаточно "большими для использования многошпиндельных завертывающих устройств.

7. Гайки, расположенные на внутренних поверхностях деталей, шплинтовать

8. Для стопорения гаек и винтов предусматривать у них конические опорные поверхности. Отпадает необходимость шплинтовки и пружинных шайб. Требования к технологичности других соединений приведены в литературе .

Особенности технологичности конструкций сборочных единиц в условиях автоматической сборки

При автоматической сборке к технологичности конструкций предъявляются следующие требования:

1. Детали изделия должны иметь простые симметричные формы (упрощается ориентация). Если детали не симметричны, то асимметрия должна быть четко выражена

2. Конструкция деталей должна предотвращать их взаимное сцепление при выдаче из бункера.

3. Использовать в максимальной степени унифицированные стандартные детали для большого применения однотипных сборочных устройств.

4. Заменять разъемные соединения неразъемными (для неремонтируемых частей изделия), применяя методы сборки, основанные на пластическом деформировании (развальцовка, клепка и т.д.).

5. Сборка должна осуществляться при простых (преимущественно прямолинейных) движениях исполнительных устройств без поворота изделия.

6 .Для повышения надежности работы сборочных автоматов в ряде случаев целесообразно назначать более жесткие допуски на детали изделия.

10.7. Выбор метода достижения точности сборки

При соединении деталей машин при сборке необходимо обеспечить их взаимное расположение в пределах заданной точности. Вопросы, связанные с достижением требуемой точности сборки решаются с использованием анализа размерных цепей собираемого изделия. Достижение заданной точности сборки заключается в обеспечении размера замыкающего звена размерной цепи, не выходящего за пределы допуска.

В зависимости от типа производства различают пять методов достижения точности замыкающего звена при сборке.

1. Полной взаимозаменяемости.

2. Неполной взаимозаменяемости.

3. Групповой взаимозаменяемости.

4. Регулирования.

5. Пригонки.

Характеристики данных методов приведены в таблице 10.1 .

Метод полной взаимозаменяемости экономично применять в крупносерийном и массовом производстве. Основан метод на расчете размерных цепей на максимум - минимум. Метод прост и обеспечивает 100 %-ую взаимозаменяемость Недостаток метода - уменьшение допусков на составляющие звенья, что приводит к увеличению себестоимости изготовления и трудоемкости.

Метод неполной взаимозаменяемости заключается в том, что допуски на размеры деталей, составляющие размерную цепь, преднамеренно расширяют для удешевления производства. В основе метода лежит положение теории вероятности, согласно которому крайние значения погрешностей, составляющих звеньев размерной цепи встречаются значительно реже, чем средние значения.Такая сборка целесообразна в серийном и массовом производствах при многозвенных цепях.

Таблица 10.1. Методы достижения точности замыкающего звена,

применяемые при сборке (ГОСТ 23887-79, ГОСТ 16319-80,

ГОСТ 14320-81)

Метод

Сущность метода

Область применения

Полной взаимозаменяемости

Метод, при котором требуемая точность замыкающего звена размерной цепи достигается у всех объектов путем включения в нее составляющих звеньев без выбора, подбора или изменения их значений

Использование экономично в условиях достижения высокой точности при малом числе звеньев размерной цепи и при достаточно большом числе изделии, подлежащих сборке

Неполной взаимозаменяемости

Метод, при котором требуемая точность замыкающего звена размерной цепи достигается у заранее обусловленной части объектов путем включения в нее составляющих звеньев без выбора, подбора или изменения их значений

Использование целесообразно для достижения точности в многозвенных размерных цепях, допуски на составляющие звенья при этом больше, чем в предыдущем методе, что повышает экономичность получения сборочных единиц, у части изделий погрешность замыкающего звена может быть за пределами допуска на сборку, т.е. возможен определенный риск несобираемости

Групповой взаимозаменяемости

Метод, при котором требуемая точность замыкающего звена размерной цепи достигается путем включения в размерную цепь составляющих звеньев, принадлежащих одной из групп, на которые они предварительно рассортированы

Применятся для достижения наиболее высокой точности замыкающих звеньев малозвенных размерных цепей; требует четкой организации сортировки деталей на размерные группы, их маркировки, хранения и транспортирования в специальной таре

Пригонки

Метод, при котором точность замыкающего звена размерной цепи достигается изменением размера компенсирующего звена путем удаления с компенсатора определенного слоя материала

Используется при сборке изделий с большим числом звеньев, детали могут быть изготовлены с экономичными допусками, но требуются дополнительные затраты на пригонку компенсатора, экономичность в значительной мере зависит от правильного выбора компенсирующего звена, которое не должно принадлежать нескольким связанным размерным цепям

Регулирования

Метод, при котором требуемая точность замыкающего звена размерной цепи достигается изменением размера или положения компенсирующего звена без удаления материала с компенсатора.

Аналогичен методу пригонки, но имеет большее преимущество в том, что при сборке не требуется выполнять дополнительные работы со снятием слоя материала, обеспечивает высокую точность и дает возможность периодически ее восстанавливать при эксплуатации машины.

Сборка с компенсирующими материалами

Метод, при котором требуемая точность замыкающего звена размерной цепи достигается применением компенсирующего материала, вводимого в зазор между сопрягаемыми поверхностями деталей после их установки в требуемом положении

Использование наиболее целесообразно для соединений и узлов, базирующихся по плоскостям (привалочные поверхности станин, рам, корпусов, подшипников, траверс и т. п..); в ремонтной практике для восстановления работоспособности сборочных единиц, для изготовления оснастки

Метод групповой взаимозаменяемости применяют при сборке соединений высокой точности, когда точность сборки практически недостижима методом полной взаимозаменяемости (например, шарикоподшипники). В этом случае детали изготовляют по расширенным допускам и сортируют в зависимости от размеров на группы так, чтобы при соединении деталей, входящих в группу, было обеспечено достижение установленного конструктором допуска замыкающего звена.

Недостатками данной сборки являются: дополнительные затраты на сортировку деталей по группам и на организацию хранения и учета деталей; усложнение работы планово-диспетчерской службы.

Сборка методом групповой взаимозаменяемости применяется в массовом и крупносерийном производствах при сборке соединении, обеспечение точности которых другими методами потребует больших затрат.

Сборка методом пригонки трудоемка и применяется в единичном и мелкосерийном производствах

Метод регулировки имеет преимущество перед методом пригонки, т.к. не требует дополнительных затрат и применяется в мелко- и среднесерийном производствах.

Разновидностью метода компенсации погрешностей является способ сборки плоскостных соединений с применением компенсирующего материала, (например, пластмассовой прослойки).

10.8. Последовательность и содержание сборочных операций. Схемы сборки

Для разработки последовательности сборочных операций необходимо провести расчленение собираемого изделия на составные части. При этом учитывают следующие требования.

1. Сборочную единицу не следует расчленять в процессе сборки, транспортировки и монтажа.

2. Сборочным операциям предшествуют подготовительные и пригоночные работы, которые выделяют в самостоятельные операции.

3. Габаритные размеры сборочных единиц устанавливают с учетом наличия подъемно-транспортных средств.

4. Сборочная единица должна состоять из небольшого числа деталей и сопряжении для упрощения организации сборочных работ.

5. Сокращать число деталей, подаваемых непосредственно на сборку, за исключением базовой детали и крепежа.

6. Изделие следует расчленять так, чтобы его конструкция позволяла осуществлять сборку с наибольшим числом сборочных единиц. Последовательность сборки зависит от:

Конструкции изделия;

Компоновки деталей;

Метода достижения требуемой точности,

Функциональной взаимосвязи элементов изделия;

Конструкции базовых элементов;

Условия монтажа силовых и кинематических передач;

Наличия легко повреждаемых элементов;

Размеров и массы присоединяемых элементов. Последовательность сборки (сборочных операций) разрабатывают, соблюдая следующие требования.

1. Предшествующие операции не должны затруднять выполнение последующих.

2. Для поточной сборки разбивка процесса на операции должна осуществляться с учетом такта сборки.

3. После операций, содержащих регулирование или пригонку, необходимо предусмотреть контрольные операции.

4. Если изделие имеет несколько размерных цепей, то сборку начинают с наиболее сложной и ответственной цепи.

5. В каждой размерной цепи сборку необходимо завершать установкой тех элементов соединения, которые образуют ее замыкающее звено.

6. При наличии нескольких размерных цепей с общими звеньями сборку начинать с элементов той цепи, которая в наибольшей степени влияет на точность изделия

Для определения последовательности сборки изделия и его составляющих частей разрабатывают технологические схемы сборки (рис. 10,2).

Эти схемы, являясь первым этапом разработки технологического процесса, в наглядной форме отражают маршрут сборки изделия и его составных частей. Технологические схемы сборки составляют на основе сборочных чертежей изделия.

На технологических схемах каждая деталь или сборочная единица обозначается прямоугольником, разделенным на 3 части (рис. 10.2, в). В верхней части прямоугольника указывают наименование детали или сборочной единицы, в левой нижней части - номер, присвоенный детали или сборочной единице на сборочных чертежах изделия, в правой нижней части - число собираемых элементов. Сборочные единицы обозначают буквами «Сб» (сборка). Базовыми называются детали или сборочные единицы, с которых начинается сборка. Каждой сборочной единице присваивается номер ее базовой детали. Например, «Сб.7» -сборочная единица с базовой деталью N 7. Порядок сборочной единицы указывают цифрой перед буквенным обозначением «Сб». Например, индекс «1С6.10» означает сборочную единицу 1-го порядка с базовой деталью N 10.

Технологическую схему сборки строят в следующей последовательности.

В левой части схемы (рис. 10.2, а) указывают базовую деталь или базовую сборочную единицу. В правой части схемы указывают собираемое изделие в сборе. Эти два прямоугольника соединяют горизонтальной линией. Выше этой линии прямоугольниками обозначают все детали, входящие непосредственно в изделие, в порядке последовательности сборки. Ниже этой линии прямоугольниками обозначают сборочные единицы первого порядка (непосредственно входящие в изделие), в порядке последовательности сборки.

Схемы сборки единиц первого порядка могут строиться как отдельно (по приведенному выше правилу - рис. 10.2, б), так и непосредственно на общей схеме, развивая ее в нижней части схемы (под линией).

Технологические схемы сборки сопровождаются подписями, если они не очевидны из самой схемы, например, «Запрессовать», «Сварить», «Проверить

на биение» и т.д.

Технологические схемы сборки одного и того же изделия многовариантны.

Оптимальный вариант выбирают из условия обеспечения заданного качества сборки экономичности и производительности процесса при заданном масштабе выпуска изделий. Составление технологических схем целесообразно при проектировании сборочных процессов для любого типа производства. Технологические схемы упрощают разработку сборочных процессов и облегчают оценку изделия на технологичность.

После разработки схем сборки устанавливают состав необходимых работ и определяют содержание технологических операций. В состав технологического процесса сборки в качестве технологических операций вносят разнообразные сборочные работы. Виды сборочных работ приведены в таблице 10.2.

Технологические процессы сборки типовых сборочных единиц, сборки неподвижных разъемных соединений (резьбовых, шпоночных, шлицевых и т.п.), сборки неразъемных соединений (пластическим деформированием, сваркой, пайкой, склеиванием), сборки различных передач машин и механизмов (зубчатые, цепные и др.) описаны в работе .

10.9. Технология балансировки

Вращающиеся детали и сборочные единицы в машинах должны быть отба-лансированы Несбалансированность сопровождается вибрациями и дополнительными нагрузками на опоры. Основные понятия технологии балансировки

предусматриваются ГОСТ 19534-74.

Дисбалансом называют векторную величину, равную произведению неуравновешенной массы на ее расстояние (эксцентриситет) до оси ротора. Ротором называют любую деталь или сборочную единицу, которая при вращении удерживается своими несущими поверхностями в опорах. Единицей дисбаланса являются грамм-миллиметр (г х мм) и градус, служащие для измерения собственно значения дисбаланса и градуса дисбаланса.

Все дисбалансы ротора приводятся к двум векторам - главному вектору и главному моменту дисбалаисов. Главный вектор дисбалансов равен произведению массы неуравновешенного ротора на эксцентриситет. Главный момент дисбалансов равен геометрической сумме моментов всех дисбалансов ротора относительно его центра масс. Отношение модуля главного вектора дисбалансов к массе ротора называют удельным дисбалансом.

Технология балансировки состоит из определения значений и углов дисбалансов ротора и уменьшения их корректировкой массы ротора. Корректировку массы ротора можно провести путем добавления, уменьшения или перемещения корректирующей массы, создающий дисбаланс такого же значения,что и у

неуравновешенного ротора, но с углом дисбаланса 180 градусов относительно дисбаланса ротора.

Различают балансировку статическую и динамическую. При статической балансировке определяют и уменьшают главный вектор дисбалансов, т.е. центр масс ротора приводится на ось вращения размещением соответствующей корректирующей массы. При динамической балансировке определяют и уменьшают главный момент и главный вектор путем размещения корректирующих масс в двух плоскостях коррекции.

Балансировочные операции могут выполняться на всех стадиях производственного процесса: в начале обработки заготовки, после завершения механо-обработки, в процессе сборки.

Таблица 10.2. Виды сборочных работ

Работы

Краткая характеристика

Удельный вес, %, в обшей трудоемкости сборки при производстве

серийном

массовом

Подготовительные

Приведение деталей и покупных изделии в состояние, необходимое в связи с условиями сборки: расконсервация, мойка, сортировка на размерные группы, укладка в тару и др.

8- 10

Пригоночные

Обеспечение сборки соединений и технических требований к ним: опи-ливание и зачистка, притирка, полирование, шабрение, сверление, развертывание, правка, гибка

20-25

Собственно-сборочные

Соединение двух или большего числа деталей с целью получения сборочных единиц и изделий основного производства: свинчивание, запрессовывание, сварка, склеивание и др.

44-47

70-75

Регулировочные

Достижение требуемой точности взаимного расположения деталей в сборочных единицах и изделиях, балансировка

Контрольные

Проверка соответствия сборочных единиц и изделий параметрам, установленным чертежом и техническими условиями на сборку

10-12

8- 10

Демонтажные

Частичная разборка собираемых изделий с целью подготовки их к упаковке и транспортировке к потребителю

10. 9 .1 . Способы и средства статической балансировки

Ц ентр тяжести статически неуравновешенного ротора не совпадает с его осью.

Под действием силы тяжести создается момент относительно оси или точки подвеса ротора, который стремится повернуть ротор так, чтобы центр тяжести его переместился в нижнее положение.На этом принципе основано действие различных средств для выявления и определения статической неуравновешенности:

роликовые или дисковые опоры (рис. 10.3,а);

горизонтальные параллельные призмы (рис. 10.3,б).

При этих способах точность определения дисбаланса зависит от массы ротора и от трения между оправкой ротора и опорой. Для снижения трения и повышения точности используют наложение на опоры вибраций или подачу воздуха под шейки оправки.

Другой принцип, на котором основано действие устройств для выявления статической неуравновешенности, заключается в изменении положения центра масс ротора в горизонтальной плоскости при принудительном повороте ротора. Для этого применяют балансировочные весы.

Для тяжелых роторов с большим диаметром и не имеющим собственных опор применяют следующий способ. Ось ротора располагается вертикально, а под действием момента от главного вектора дисбалансов происходит поворот или качание ротора на пяте, шарике, острие, подвесе или платформе-поплавке.

Кроме данных способов применяется статическая балансировка в динамическом режиме. Способ заключается в принудительном вращении ротора с регистрацией давления или колебаний на специальных балансировочных станках. Статическую балансировку применяют для относительно коротких деталей типа шкивов и маховиков.

Для длинных деталей, у которых 1/ d >3 и скорость вращения V >6 м/с например, шпиндели станков, коленчатые валы необходима динамическая балансировка.

10.9.2. Способы и средства динамической балансировки

При динамической балансировке деталь или сборочная единица приводится в принудительное вращение на специальном балансировочном станке (рис.10.4.). При вращении неуравновешенных масс, находящихся на расстоянии от оси, возникают центробежные силы. Эти силы вызывают давление или вибрации в опорах ротора станка и через преобразователи фиксируются соответствующей измерительной системой.

10.9.3. Способы устранения дисбаланса ротора

Для уменьшения дисбалансов ротора используются корректирующие массы, которые удаляются из тела ротора, добавляются к нему или перемещаются по ротору. Удаление материала может производиться опиливнием, отламыванием специальных приливов, точением, фрезерованием, шлифованием, сверлением и др. Добавление материала может производиться приваркой, клепкой, пайкой, привертыванием, наклеиванием и др.

Перемещение корректирующих масс по ротору применяется в тех случаях, когда в процессе эксплуатации сборочных единиц наблюдается непрерывное изменение дисбаланса (например, шлифовального круга из-за его износа). Для этого применяют специальные конструктивные элементы (втулки, секторы, сухари, шары, винты), перемещаемые в нужное место ротора.

10.9.4. Точность балансировки

Точность балансировки характеризуется произведением удельного дисбаланса на наибольшую частоту вращения ротора в эксплуатационных условиях Согласно ГОСТ 22061-76 предусматривается 13 классов точности (от 0 до 12) балансировки. При назначении класса точности балансировки сборочных единиц можно пользоваться табл. 10.3 .

Таблица 10.3. Классы точности балансировки сборочных единиц, относящихся к жестким роторам

Класс точности балансировки

Типы жестких роторов

Шпиндели прецизионных шлифовальных станков, гироскопы

Приводы шлифовальных станков

Турбокомпрессоры, турбонасосы, приводы металлорежущих станков, роторы электродвигателей с повышенными требованиями к плавности хода

Роторы общих электродвигателей, крыльчатки центробежных насосов, маховики, вентиляторы, барабаны центрифуг

Роторы сельскохозяйственных машин, карданные валы, коленчатые валы двигателей с повышенными требованиями к плавности хода

Колеса легковых автомобилей, бандажи, колесные пары

Коленчатый вал с маховиком, муфтой сцепления, шкивом высокооборотного шестицилиндрового дизельного двигателя

То же для четырехцилиндрового дизельного двигателя

То же для четырехтактного двигателя большой мощности

То же для двухтактного двигателя большой мощности

То же для низкооборотного судового дизеля с нечетным числом цилиндров

Рис.10.3. Устройства для статической балансировки: а- на вращающихся дисках; б- на параллелях

Рис 10.4. Схемы динамических балансировочвых станков.

10.10. Выбор сборочного оборудования,

оснастки и подъемно- транспортных средств

При серийном производстве оборудование и оснастку применяют универсального, переналаживаемого типа. Их размеры принимают по наиболее крупному прикрепленному к данному рабочему месту изделию.

В массовом производстве преимущественно применяют специальные оборудование и оснастку. Тип, размеры и грузоподъемность подъемно-транспортных средств определяют по установленным организационным формам сборки, размерам изделий и их массе.

10.10.1. Сборочное оборудование

Оборудование, используемое при сборке, делится на две группы: технологическое и вспомогательное. Технологическое оборудование предназначено для выполнения работ по осуществлению различных сопряжений деталей, их регулировке и контролю. Вспомогательное оборудование предназначено для механизации вспомогательных работ.

Технологическое оборудование

При сборке неподвижных разъемных соединений применяют одно- и многошпиндельные стационарные установки для навинчивания гаек и их затяжки. При сборке неподвижных неразъемных соединений с нагревом охватывающей детали применяют электропечи для нагрева мелких деталей в масляной ванне или индукционные печи. При сборке этих соединений с охлаждением охватываемой детали применяют специальное оборудование для охлаждения деталей сжиженным газом или твердой углекислотой.

При сборке неподвижных неразъемных соединений механически применяют различные прессы. Прессовое оборудование выбирают, исходя из расчетного усилия запрессовки с коэффициентом запаса 1.5…2 и габаритов собираемой сборочной единицы. Различают: винтовые ручные прессы, реечные верстачные прессы, пневматические прессы, гидравлические прессы, пневмогидравлические прессы, электромагнитные прессы и др. Характеристика различных прессов приведена в работе  13  .

Вспомогательное оборудование

Вспомогательное оборудование включает в себя транспортное, подъемное, установочное и др.

Транспортное оборудование применяют в основном для подвижной сборки.

К транспортному оборудованию относят:

Роликовые конвейеры (рольганги);

Сборочные тележки;

Ленточные конвейеры;

Приводные тележечные конвейеры;

Карусельные конвейеры;

Цепные напольные конвейеры;

Рамные (шагающие) конвейеры;

Подвижные конвейеры.

Классификация конвейеров для сборки приведена на рис. 10.5 .

Характеристика транспортного оборудования приведена в работе . Подъемное оборудование применяется для подъема и перемещения деталей и сборочных единиц при сборке. Наибольшее применение получили электрические тали, консольные подъемные краны, кран-балки, а для тяжелых изделий - передвижные краны, установленные на подкрановые пути.

Классификация подъемно-транспортных средств приведена на рис. 10.6 .

10.10.2. Сборочный и слесарный инструмент

При сборке применяют как ручной, так и механизированный инструмент с электрическим, пневматическим и гидравлическим приводами.

Сверлильные машины используют для сверления отверстий. Они имеют электрический или пневматический привод.

Шлифовальные машины используют для зачистки сварных швов, отливок, снятия заусенцев, шлифования и полирования. Их изготавливают с электро- и пневмоприводом. Для работы в труднодоступных местах применяют машины с гибким валом.

Ножницы применяют для прямолинейной и фасонной резки листовой стали и сплавов. Различают ножевые, вырубные, дисковые и рычажные ножницы.

Пневматические рубильные молотки используют для рубки и чеканки металла, доводки отливок, клепки заклепок и др.

Резьбонарезные пневматические машины предназначены для нарезания резьбы.

Для механизации сборки резьбовых соединений применяют ручные одношпиндельные резьбозавертывающие машины: гайко-, шпилько- и винтоверты. По принципу работы их подразделяют на машины вращательного действия,

часто ударные и редко ударные. Из нормализованных резьбозавертывающих силовых головок компонуют многошпиндельные гайковерты.

Для удержания механизированного инструмента при пользовании им применяют свободные или жесткие подвески Свободная подвеска более удобна в эксплуатации, однако, она не ограждает рабочего от реактивных моментов, и ее применяют для инструментов небольшой мощности.

Для механизации сборки клепаных соединений применяют клепальные молотки, ручные пневматические прессы, гидравлические и пневмогидравлические установки.

10.10.3. Сборочные приспособления

Сборочные приспособления служат для механизации ручной сборки, обеспечивают быструю установку и закрепление сопрягаемых элементов изделия. По степени специализации их подразделяют на универсальные и специальные.

Универсальные приспособления применяют в единичном и мелкосерийном производствах. К ним относят: плиты, сборочные балки, призмы и угольники. струбцины, домкраты, различные вспомогательные детали и устройства.

Специальные приспособления применяют в крупносерийном и массовом производствах для выполнения сборочных операций. Эти приспособления делят на два типа. К первому типу относят приспособления для неподвижной установки и закрепления базовых деталей и сборочных единиц собираемого изделия. Такие приспособления облегчают сборку и повышают производительность труда, т.к. рабочие освобождаются от необходимости удерживать объект сборки руками. Для удобства их часто выполняют поворотными. Данные приспособления могут быть одно- и многоместными, стационарными или передвижными.

Ко второму типу специальных сборочных приспособлений относят приспособления для точной и быстрой установки соединяемых частей изделия без выверки. Эти приспособления применяют для сварки, пайки, клепки, склеивания, развальцовки, посадки с натягом, резьбовых и других сборочных соединений. Приспособления этого типа могут быть одно- и многоместными, стационарными и подвижными.

При больших размерах изделий для изменения их положения в процессе сборки применяют поворотные устройства.

10.11. Нормирование сборочных операций

Структура нормы времени на сборочные операции аналогична структуре нормы на станочные работы. При сборке изделий партиями определяется штучно-калькуляционное время. При поточной сборке в состав штучного времени включается время на транспортирование собираемого изделия, если оно не перекрывается другими элементами штучного времени.

В условиях поточного производства длительность каждой операции по аналогии со станочными работами должна быть равна или кратна такту сборки машины. Обеспечение этого условия достигается различными способами:

Изменением содержания операций путем их совмещения или расчленения;

Применением более производительных средств оснащения и др.

Нормирование сборочных работ ведется по нормативам времени на слесарно-сборочные работы. Основное отличие нормирования сборочных операций от нормирования операций механической обработки заключается в значительно меньшем объеме машинного времени в структуре нормы времени и в отсутствии четкого разделения основного и вспомогательного времени на переходе. Это затрудняет внедрение техническим обоснованных норм, что делает норму зависимой от субъективных оценок нормировщиков. Для совершенствования нормирования сборочных работ необходима типизация нормирования времени.

На основе норм штучного или штучно-калькуляционного времени определяются трудоемкость сборки всего изделия и количество рабочих мест, необходимых для сборки.

10.12. Технико-экономическая оценка и основные показатели технологического процесса сборки

Критерии для оценки вариантов спроектированных технологических процессов сборки делят на абсолютные и относительные.

Абсолютные критерии:

Трудоемкость технологического процесса сборки, как сумма штучного времени по всем операциям сборки;

Технологическая себестоимость выполнения сборки;

Длительность цикла сборки партии изделий при непоточной сборке. При поточной сборке - длительность цикла сборки той же партии изделий с определением ритма и темпа выпуска;

Число единиц сборочного оборудования;

Число сборщиков,

Средний разряд сборщиков;

Энерговооруженность сборщиков.

Относительные критерии:

Коэффициент трудоемкости сборочного процесса, равный отношению трудоемкости сборки изделия к трудоемкости обработки деталей изделия;

Коэффициент себестоимости сборки равный отношению себестоимости сборки к себестоимости изделия в целом;

Коэффициент загрузки рабочих мест и поточной линии. Определяются по аналогии со станочными работами;

Коэффициент расчлененности сборочного процесса равный отношению суммарной трудоемкости узловой сборки к общей трудоемкости сборки изделия;

Коэффициент совершенства сборочного процесса изделия равный отношению разности трудоемкости сборки изделия и трудоемкости пригоночных работ к трудоемкости сборки изделия

Уровень автоматизации сборки равный отношению длительности сборки изделия на автоматизированных операциях к длительности сборки на всех операциях;

Коэффициент оснащенности технологического процесса сборки равный отношению числа сборочных приспособлений, применяемых на всех операциях, к числу операций сборки данного изделия.

10.13. Документация технологического процесса сборки

При проектировании сборочных технологических процессов, также как в процессе изготовления деталей, применяется единая система технологической документации. По единой системе технологической документации предусмотрены ее следующие виды:

Маршрутная карта;

Операционная карта;

Карта эскизов;

Технологическая инструкция;

Ведомость оснастки;

Ведомость технологических документов.

Дополнительно для сборочных технологических процессов вводится комплектовочная карта. Комплектовочная карта- технологический документ, содержащий данные о деталях, входящих в собираемое изделие.

Технологическая документация сборки кроме указанных выше документов содержит также сборочные чертежи с техническими условиями приемки и технологические схемы сборки.

10.14. Испытание собранных изделий

Испытание собранных изделий является заключительной операцией их изготовления. Различают контрольные и специальные испытания. Контрольные испытания проводят с целью контроля качества продукции. Одним из видов контрольных испытаний являются приемосдаточные испытания. Приемосдаточные испытания проводятся изготовителем для принятия решения о пригодности собранного изделия к поставке или использованию.

Все виды контрольных испытаний изделия делятся на три группы:

Проверка в статическом состоянии,

Проверка на холостом ходу;

Проверка под нагрузкой.

В статическом состоянии проверяются:

Геометрическая точность изделия;

Жесткость изделия (для металлорежущих станков);

Плавность перемещения подвижных частей в ручном режиме и др.

На холостом ходу проверяются:

Правильность работы механизмов и систем изделия;

Мощность холостого хода;

Надежность блокировки;

Уровень шума;

Уровень вибраций;

Температура нагрева подшипников.

Под нагрузкой проверяют:

Безотказность работы механизмов и систем изделия при его максимальном нагружении;

К.п.д. при максимально допустимой нагрузке;

Качество работы машины в производственных условиях;

Эксплуатационные характеристики и др.

Машины специального назначения и опытные образцы подвергают испытанию на производительность. Машины, предназначенные для производства, сортировки и контроля продукции, испытывают на точность. Для машин распространенных типов (например: металлорежущие станки) порядок проведения испытаний регламентирован государственными стандартами.

Специальные или исследовательские испытания проводят по специальной программе в тех случаях, когда необходимо изучить пригодность конструктивных изменений, новых марок материалов и исследование каких-то определенных процессов в работе машины.

  • 1.4. Технологические процессы сборки
  • 2. Точность механической обработки
  • 2.1. Точность и ее определяющие факторы
  • 2.2. Статистические методы исследования точности механической обработки
  • 2.2.1. Метод кривых распределения погрешностей
  • 2.2.2. Графоаналитический метод (метод точечных диаграмм)
  • 2.3. Расчетно-статистический метод исследования точности
  • 2.3.1. Погрешности установки. Стандарты по базированию и установочным элементам
  • Основные рекомендации о порядке выбора баз и решаемые при этом задачи
  • Условные обозначения опор
  • Погрешность положения заготовки εпр, вызываемая неточностью приспособления
  • 2.3.2. Упругие деформации технологической системы
  • 2.3.3. Износ режущего инструмента
  • Начальный uн и относительный u0, износ режущих инструментов при чистовом точении и растачивании
  • 2.3.4. Тепловые деформации технологической системы
  • Зависимость удлинения резца от различных факторов
  • Тепловые деформации станков
  • Тепловые деформации изготавливаемой детали
  • 2.3.5. Геометрические неточности станков и режущего инструмента
  • Классификация станков по точности
  • 2.3.6. Деформации заготовок, вызываемые внутренними напряжениями
  • 2.3.7. Размерная наладка станков
  • Наладка методом пробных стружек и промеров
  • Размерная наладка по пробным деталям
  • Рекомендации по размерной наладке методом пробных деталей
  • Размерная наладка по калибрам наладчика
  • Статическая наладка
  • 2.3.8. Колебания при механической обработке
  • Методы борьбы с колебаниями
  • 2.3.10. Управление точностью механической обработки
  • 3. Качество поверхностного слоя деталей
  • 3.1. Критерии качества поверхностного слоя
  • 3.2. Влияние технологических факторов на величину шероховатости
  • 4. Определения припусков для механической обработки
  • Расчетная длина заготовки при определении
  • 5. Проектирование технологических процессов механической обработки
  • 5.1. Типизация технологических процессов
  • 5.2. Групповой метод обработки
  • 5.2.1. Группирование деталей
  • 5.2.2. Комплексная деталь
  • 5.3. Модульная технология
  • 5.4. Последовательность и правила проектирования технологических процессов изготовления деталей
  • 5.4.1. Анализ исходных данных для разработки технологического процесса
  • Соотношения между допусками размера, формы и параметрами шероховатости цилиндрических поверхностей
  • Анализ технологичности изделий
  • Требования к технологичности формы детали
  • Примеры технологичных и нетехнологичных конструкций
  • Выбор материала заготовки
  • Технологические свойства сталей
  • Коэффициенты обрабатываемости резанием различных материалов
  • Значения критического диаметра Dk прокаливаемости
  • Структура и свойства сердцевины детали
  • Механические свойства стали 45хн после то
  • Наличие удобных и надежных баз
  • 5.4.2. Определение типа производства
  • Годовая программа выпуска деталей по типам производств
  • Организационно-технические характеристики типов производства
  • 5.4.3. Определение класса детали и выбор в качестве аналога действующего типового или группового технологического процесса
  • Пример декодирования и укрупненного анализа
  • 5.4.4. Выбор исходной заготовки и методов ее изготовления
  • Характеристика основных методов получения заготовок литьем
  • Характеристика основных методов получения заготовок обработкой давлением
  • 5.4.5. Выбор технологических баз
  • 5.4.6. План обработки отдельных поверхностей
  • Основные методы и виды обработки наружных цилиндрических поверхностей
  • 5.4.7. Проектирование технологического маршрута обработки заготовки
  • Этапы технологического процесса
  • Этапы обработки
  • 5.4.9. Нормирование технологических операций
  • 6. Типовые технологические
  • 6.1. Технология изготовления валов
  • 6.1.1. Характеристика валов
  • Технологические задачи
  • Форма и размеры центровых отверстий
  • 6.1.4. Методы обработки наружных цилиндрических поверхностей
  • 6.1.4.1. Методы предварительной обработки наружных цилиндрических поверхностей
  • Обработка на токарно-карусельных станках
  • Обработка на токарно-револьверных станках
  • 6.1.4.2. Методы чистовой обработки наружных цилиндрических поверхностей
  • Шлифование
  • 6.1.4.3. Методы повышения качества поверхностного слоя деталей
  • 6.1.5. Обработка на валах элементов типовых сопряжений
  • 6.1.5.1. Обработка на валах шпоночных пазов
  • 6.1.5.2. Обработка на валах шлицев
  • 6.1.5.3. Обработка на валах резьбовых поверхностей
  • 6.1.6. Типовые маршруты изготовления валов
  • 6.1.6.1. Примеры типовых маршрутов изготовления ступенчатых шлицевых валов
  • 6.3. Технология изготовления корпусных деталей
  • 6.3.1. Характеристика корпусных деталей
  • 6.3.2. Материал и заготовки для корпусных деталей
  • 1.3.3. Основные схемы базирования
  • 6.3.4. Методы обработки плоских поверхностей
  • 6.3.4.1. Обработка плоских поверхностей лезвийным инструментом
  • 6.3.4.2. Обработка плоских поверхностей абразивным инструментом
  • 6.3.5.1. Пример типового маршрута изготовления кронштейна
  • 6.4. Технология изготовления зубчатых колес
  • 6.4.1. Характеристика зубчатых колес
  • 6.4.2. Материалы и заготовки зубчатых колес
  • 6.4.3. Основные схемы базирования
  • 6.4.4.1. Нарезание зубчатых колес методом копирования
  • 6.4.4.2. Нарезание зубчатых колес методом обкатки
  • 6.4.4.3. Накатывание зубчатых колес
  • 6.4.4.4. Обработка торцовых поверхностей зубьев зубчатых колес
  • 6.4.4.5. Методы отделочной обработки зубьев зубчатых колес
  • 6.4.5. Типовые маршруты изготовления зубчатых колес
  • 6.4.5.1. Пример типового маршрута изготовления зубчатого колеса
  • 7. Автоматизация технологической подготовки производства
  • 8. Оформление технологической документации
  • 8.1. Маршрутная карта
  • Сведения, вносимые в отдельные графы и строки маршрутной карты
  • 8.2. Операционная карта
  • 8.3. Карта эскизов
  • 8.4. Документы технического контроля
  • Информация, вносимая в карту технического контроля
  • 1.4. Технологические процессы сборки

    Сборка - образование соединений составных частей изделия. Соединения могут быть разъемными и неразъемными (соединение свинчиванием, запрессовыванием, сваркой, склеиванием и пр.).

    Сборочные работы составляют значительную долю общей трудоемкости изготовления машины. В зависимости от типа производства трудоемкость сборки составляет от (20...30) % в массовом и до (30...40) % в единичном производстве. Основная часть слесарно-сборочных работ представляет собой ручные работы, требующие больших затрат физического труда и высокой квалификации рабочих.

    Вышеизложенное показывает, что при изготовлении машины сборке принадлежит ведущая роль. Технологические процессы изготовления деталей в большинстве случаев подчинены технологии сборки машины. Следовательно, сначала должна разрабатываться технология сборки машины, а затем - технология изготовления деталей.

    В зависимости от условий, типа и организации производства сборка имеет различные организационные формы (поточную и непоточную, стационарную и подвижную, узловую и общую).

    Технологический процесс сборки представляет собой часть производственного процесса, содержащую действия по установке и образованию соединений, составных частей изделия.

    Технологический процесс сборки обычно разрабатывают поэтапно:

    В зависимости от объема выпуска (заданной программы) устанавливается целесообразная организационная форма сборки, определяются ее такт и ритм;

    Осуществляется технологический анализ сборочных чертежей для отработки конструкции на технологичность;

    Производятся размерный анализ конструкций, расчет размерных цепей и разрабатываются методы достижения точности сборки (полная, неполная, групповая взаимозаменяемость, регулировка и пригонка);

    Определяется целесообразная степень дифференциации или концентрации сборочных операций;

    Устанавливается последовательность соединения всех сборочных единиц и деталей изделия и составляются технологические схемы узловой и общей сборки;

    Разрабатываются (или выбираются) наиболее производительные, экономичные и технически обоснованные способы сборки, способы контроля и испытаний;

    Разрабатываются (или выбираются) необходимое технологическое или вспомогательное оборудование и технологическая оснастка (приспособления, режущий инструмент, монтажное и контрольное оборудование);

    Производятся техническое нормирование сборочных работ и определение экономических показателей;

    Разрабатывается планировка, оборудование рабочих мест и оформляется техническая документация на сборку.

    Одним из основных этапов проектирования, в большой степени определяющих эффективность технологических процессов сборки, является анализ технологичности конструкции. В соответствии со стандартами ЕСТПП требования к технологичности сборочной единицы разбиты на 3 группы:

    1) требования к составу сборочной единицы;

    2) требования к конструкции соединения составных частей;

    3) требования к точности и методу сборки. Требования к составу сборочной единицы:

    Сборочная единица должна расчленяться на рациональное число составных частей с учетом принципа агрегатирования;

    Конструкция сборочной единицы должна обеспечивать возможность компоновки из стандартных и унифицированных частей;

    Сборка изделия не должна обусловливать применение сложного технологического оснащения;

    Виды используемых соединений, их конструкции и месторасположение должны соответствовать требованиям механизации и автоматизации сборочных работ;

    В конструкции сборочной единицы и ее составных частей, имеющих массу более 20 кг, должны предусматриваться конструктивные элементы для удобного захвата грузоподъемными средствами, используемыми в процессе сборки, разборки и транспортирования;

    Конструкция сборочной единицы должна предусматривать базовую составную часть, которая является основой для расположения остальных составных частей;

    Компоновка конструкции сборочной единицы должна позволять производить сборку при неизменном базировании составных частей;

    В конструкции базовой составной части необходимо предусматривать возможность использования конструктивных сборочных баз в качестве технологических и измерительных;

    Компоновка сборочной единицы должна обеспечивать общую сборку без промежуточной разборки и повторных сборок составных частей;

    Компоновка составных частей сборочной единицы должна обеспечивать удобный доступ к местам, требующим контроля, регулировки и проведения других работ, регламентированных технологией подготовки изделия к функционированию и техническому обслуживанию;

    Компоновка сборочной единицы должна предусматривать рациональное расположение такелажных узлов, монтажных опор и других устройств для обеспечения транспортабельности изделия.

    Требования к конструкции соединений составных частей:

    Количество поверхностей и мест соединений составных частей в общем случае должно быть наименьшим;

    Места соединений составных частей должны быть доступны для механизации сборочных работ и контроля качества соединений;

    Соединение составных частей не должно требовать сложной и необоснованно точной обработки сопрягаемых поверхностей;

    Конструкции соединений составных частей не должны требовать дополнительной обработки в процессе сборки.

    Требования к точности и методу сборки:

    Точность расположения составных частей должна быть обоснована и взаимосвязана с точностью изготовления составных частей;

    Выбор места сборки для данного объема выпуска и типа производства должен производиться на основании расчета и анализа размерных цепей;

    Расчет размерных цепей следует производить, используя методы максимума-минимума - метод полной взаимозаменяемости, или, основанный на теории вероятностей, метод неполной взаимозаменяемости.

    В качестве примечания можно отметить, что стандарт рекомендует применять метод максимума-минимума только при расчете коротких размерных цепей (менее пяти) с высокой точностью замыкающего звена или многозвенных размерных цепей с малой точностью замыкающего звена.

    В большинстве случаев, при решении сборочных размерных цепей рекомендуется применять метод неполной взаимозаменяемости.

    В зависимости от типа производства используются также другие методы достижения точности замыкающего звена: метод групповой взаимозаменяемости; метод регулирования; метод пригонки.

    Метод полной взаимозаменяемости экономично применять в крупносерийном и массовом производстве. Основан метод на расчете размерных цепей на максимум-минимум. Метод прост и обеспечивает 100 %-ную взаимозаменяемость. Недостаток метода - уменьшение допусков на составляющие звенья, что приводит к увеличению себестоимости изготовления и трудоемкости.

    Метод неполной взаимозаменяемости заключается в том, что допуски на размеры деталей, составляющие размерную цепь, преднамеренно расширяют для удешевления производства. В основе метода лежит положение теории вероятности, согласно которому крайние значения погрешностей, составляющих звеньев размерной цепи встречаются значительно реже, чем средние значения. Такая сборка целесообразна в серийном и массовом производствах при многозвенных цепях.

    Метод групповой взаимозаменяемости применяют при сборке соединений высокой точности, когда точность сборки практически недостижима методом полной взаимозаменяемости (например, шарикоподшипники). В этом случае детали изготовляют по расширенным допускам и сортируют в зависимости от размеров на группы так, чтобы при соединении деталей, входящих в группу, было обеспечено достижение установленного конструктором допуска замыкающего звена.

    Недостатками данной сборки являются: дополнительные затраты на сортировку деталей по группам и на организацию хранения и учета деталей; усложнение работы планово-диспетчерской службы.

    Сборка методом групповой взаимозаменяемости применяется в массовом и крупносерийном производствах при сборке соединений, обеспечение точности, которых другими методами потребует больших затрат.

    Рис. 1.5. Размерная цепь для межосевого расстояния цилиндрической зубчатой передачи

    Рис. 1.6. Размерная цепь для половины бокового зазора цилиндрической зубчатой передачи

    Сборка методом пригонки трудоемка и применяется в единичном и мелкосерийном производствах.

    Метод регулирования имеет преимущество перед методом пригонки, так как не требует дополнительных затрат и применяется в мелко- и среднесерийном производствах.

    Разновидностью метода компенсации погрешностей является способ сборки плоскостных соединений с применением компенсирующего материала (например, пластмассовой прослойки).

    Особое внимание следует уделять при сборке размерным цепям, составляющими звеньями которых являются разные геометрические параметры, так как решение этих цепей проверяет на совместимость допуски, установленные на основе различных нормативных источников.

    На рис. 1.5 показана параллельно-звеньевая размерная цепь, замыкающим звеном ∆А которой является монтажное межосевое расстояние зубчатой передачи с отклонениями, нормируемыми стандартом, а составляющими звеньями являются: А1 - расстояние между осями гнезд корпуса (отклонения определяются из расчета данной Цепи); A1 иA3 - отклонения от соосности наружной и внутренней поверхностей подшипниковых втулок;A4 иA5 - смещения осей базовых шеек валов на половину зазора под воздействием распорной силы (зазоры определяются расчетом и выбором посадок); А6 и А7 - отклонения от соосности мест посадки шестерен по отношению к базовым шейкам валов (определяется с учетом допустимого радиального биения шестерен).

    На рис. 1.6 показана плоская размерная цепь, замыкающим звеном которой является половина минимального бокового зазора цилиндрической передачи Б∆ = 0,5·J min а составляющими звеньями: Б1 и Б2 - смещения исходного контураE hs для обоих колес (по виду сопряжения и нормам плавности); Б3 и Б4 - половины отклонений шага зацепленияf pb для обоих колес (по нормам плавности передачи); Б5 и Б6 - половины погрешности направления зубаF β для обоих колес (по нормам контакта); Б7 и Б8 - половины допусков соответственно на перекосf y , и отклонения от параллельностиf x осей колес в передаче (по нормам точности контакта); Б9 - нижнее отклонение межосевого расстоянияf a передачи (по нормам вида сопряжения). В результате расчета этой цепи гарантированный боковой зазор

    где K j - компенсационный зазор, компенсирующий погрешность изготовления зубчатых колес и сборки передачи, уменьшающий боковой зазор

    Для разработки последовательности сборочных операций необходимо провести расчленение собираемого изделия на составные части. При этом учитывают следующие требования:

    Сборочную единицу не следует расчленять в процессе сборки, транспортировки и монтажа;

    Сборочным операциям предшествуют подготовительные и пригоночные работы, которые выделяют в самостоятельные операции;

    Габаритные размеры сборочных единиц устанавливают с учетом наличия подъемно-транспортных средств;

    Сборочная единица должна состоять из небольшого числа деталей и сопряжений для упрощения организации сборочных работ;

    Сокращать число деталей, подаваемых непосредственно на сборку, за исключением базовой детали и крепежа;

    Изделие следует расчленять так, чтобы его конструкция позволяла осуществлять сборку с наибольшим числом сборочных единиц.

    Последовательность сборки (сборочных операций) разрабатывают, соблюдая следующие требования:

    Рис. 1.7. Сборочная единица (вал с червячным колесом)

    Предшествующие операции не должны затруднять выполнение последующих;

    Для поточной сборки разбивка процесса на операции должна осуществляться с учетом такта сборки;

    После операций, содержащих регулирование или пригонку, необходимо предусмотреть контрольные операции;

    Если изделие имеет несколько размерных цепей, то сборку начинают с наиболее сложной и ответственной цепи;

    В каждой размерной цепи сборку необходимо завершать установкой тех элементов соединения, которые образуют ее замыкающее звено;

    При наличии нескольких размерных цепей с общими звеньями сборку начинать с элементов той цепи, которая в наибольшей степени влияет на точность изделия.

    Для определения последовательности

    сборки изделия и его составляющих частей разрабатывают технологические схемы сборки. На рис. 1.7 показана сборочная единица (вал с червячным колесом), а на рис. 1.8 - технологическая схема его сборки.

    Технологические схемы, являясь первым этапом разработки технологического процесса, в наглядной форме отражают маршрут сборки изделия и его составных частей. Технологические схемы сборки составляют на основе сборочных чертежей изделия.

    На технологических схемах каждая деталь или сборочная единица обозначается прямоугольником, разделенным на три части. В верхней части прямоугольника указывают наименование детали или сборочной единицы, в левой нижней части - номер, присвоенный детали или сборочной единице на сборочных чертежах изделия, в правой нижней части - число собираемых элементов. Сборочные единицы обозначают буквами «Сб» (сборка). Базовыми называются детали или сборочные единицы, с которых начинается сборка. Каждой сборочной единице присваивается номер ее базовой детали. Например, «СБ4» - сборочная единица с базовой деталью 4 (ступица колеса).

    Технологическую схему сборки строят в следующей последовательности.

    В левой части схемы (рис. 1.8) указывают базовую деталь или базовую сборочную единицу. В правой части схемы указывают собираемое изделие в сборе. Эти два прямоугольника соединяют горизонтальной линией. Выше этой линии прямоугольниками обозначают все детали, входящие непосредственно в изделие, в порядке, соответствующем последовательности сборки. Ниже этой линии прямоугольниками обозначают сборочные единицы, непосредственно входящие в изделие.

    Рис. 1.8. Технологическая схема сборки сборочной единицы

    Схемы сборки сборочных единиц могут строиться как отдельно (по приведенному выше правилу), так и непосредственно на общей схеме, развивая ее в нижней части схемы (под линией).

    Технологические схемы сборки сопровождаются подписями, если они не очевидны из самой схемы, например, «Запрессовать», «Сварить», «Проверить на биение» и т. д.

    Технологические схемы сборки одного и того же изделия многовариантные. Оптимальный вариант выбирают из условия обеспечения заданного качества сборки, экономичности и производительности процесса при заданном масштабе выпуска изделий. Составление технологических схем целесообразно при проектировании сборочных процессов для любого типа производства. Технологические схемы упрощают разработку сборочных процессов и облегчают оценку изделия на технологичность.

    Технологические процессы сборки типовых сборочных единиц, сборки неподвижных разъемных соединений (резьбовых, шпоночных, шлицевых и т. п.), сборки неразъемных соединений (пластическим деформированием, сваркой, пайкой, склеиванием), сборки различных передач машин и механизмов (зубчатые, цепные и др.) описаны в соответствующей справочной литературе.


    © 2024
    reaestate.ru - Недвижимость - юридический справочник