22.06.2019

Как получить железо из железной руды. Химическое и физические свойства железа. Продукция черной металлургии


Процессы прямого получения железа из руд. Производство стали.

Процессы прямого получения железа из руд

Под процессами прямого получения железа понимают такие химические, электрохимические или химико-термические процессы, которые дают возможность получать непосредственно из руды, минуя доменную печь, металлическое железо в виде губки, крицы или жидкого металла.

Такие процессы ведутся, не расходуя металлургический кокс, флюсы, электроэнергию (на подготовку сжатого воздуха), а также позволяют получить очень чистый металл.

Методы прямого получения железа известны давно. Опробовано более 70 различных способов, но лишь немногие осуществлены и притом в небольшом промышленном масштабе.

В последние годы интерес к этой проблеме вырос, что связано, помимо замены кокса другим топливом, с развитием способов глубокого обогащения руд, обеспечивающих не только высокого содержания железа в концентратах (70…72%), но и почти полное освобождение его от серы и фосфора.

Получение губчатого железа в шахтных печах.

Схема процесса представлена на рис. 2.1.

Рис. 2.1. Схема установки для прямого восстановления железа из руд и получения металлизованных окатышей

При получении губчатого железа добытую руду обогащают и получают окатыши. Окатыши из бункера 1 по грохоту 2поступают в короб 10 шихтозавалочной машины и оттуда в шахтную печь 9 , работающую по принципу противотока. Просыпь от окатышей попадает в бункер 3 с брикетировочным прессом и в виде окатышей вновь поступает на грохот 2. Для восстановления железа из окатышей в печь по трубопроводу 8 подают смесь природного и доменного газов, подвергнутую в установке 7конверсии, в результате которой смесь разлагается на водород и оксид углерода . В восстановительной зоне печи Всоздается температура 1000…1100 0 C, при которой и восстанавливают железную руду в окатышах до твёрдого губчатого железа. Содержание железа в окатышах достигает 90…95%. Для охлаждения железных окатышей по трубопроводу 6 в зону охлаждения 0 печи подают воздух. Охлаждённые окатыши 5 выдаются на конвейер 4 и поступают на выплавку стали в электропечах.

Восстановление железа в кипящем слое.

Мелкозернистую руду или концентрат помещают на решётку, через которую подают водород или другой восстановительный газ под давлением 1,5 МПа. Под давлением водорода частицы руды находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий», «псевдосжиженый» слой. В кипящем слое обеспечивается хороший контакт газа-восстановителя с частицами оксидов железа. На одну тонну восстановленного порошка расход водорода составляет 600…650 м 3 .

Получение губчатого железа в капсулах-тиглях.

Используют карбидокремниевые капсулы диаметром 500 мм и высотой 1500 мм. Шихта загружается концентрическими слоями. Внутренняя часть капсулы заполнена восстановителем – измельч¨нным тв¨рдым топливом и известняком (10…15%) для удаления серы. Второй слой – восстанавливаемая измельч¨нная руда или концентрат, окалина, затем еще один концентрический слой – восстановителя и известняка. Установленные на вагонетки капсулы медленно перемещаются в туннельной печи длиной до 140 м, где происходит нагрев, выдержка при 1200 0 C и охлаждение в течение 100 часов.

Восстановленное железо получают в виде толстостенных труб, их чистят, дробят и измельчают, получая железный порошок с содержанием железа до 99 %, углерода – 0,1…0,2%.

Производство стали

Сущность процесса

Стали – железоуглеродистые сплавы, содержащие практически до 1,5% углерода, при большем его содержании значительно увеличиваются твёрдость и хрупкость сталей и они не находят широкого применения.

Основными исходными материалами для производства стали являются передельный чугун и стальной лом (скрап).

Железо окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильных печах:

Одновременно с железом окисляются кремний, фосфор, марганец и углерод. Образующийся оксид железа при высоких температурах отдаёт свой кислород более активным примесям в чугуне, окисляя их.

Процессы выплавки стали осуществляют в три этапа.

Первый этап – расплавление шихты и нагрев ванны жидкого металла.

Температура металла сравнительно невысокая, интенсивно происходит окисление железа, образование оксида железа и окисление примесей: кремния, марганца и фосфора.

Наиболее важная задача этапа – удаление фосфора. Для этого желательно проведение плавки в основной печи, где шлак содержит . Фосфорный ангидрид образует с оксидом железа нестойкое соединение . Оксид кальция – более сильное основание, чем оксид железа, поэтому при невысоких температурах связывает и переводит его в шлак:

Для удаления фосфора необходимы невысокие температура ванны металла и шлака, достаточное содержание в шлаке . Для повышения содержания в шлаке и ускорения окисления примесей в печь добавляют железную руду и окалину, наводя железистый шлак. По мере удаления фосфора из металла в шлак, содержание фосфора в шлаке увеличивается. Поэтому необходимо убрать этот шлак с зеркала металла и заменить его новым со свежими добавками .

Второй этап – кипение металлической ванны – начинается по мере прогрева до более высоких температур.

При повышении температуры более интенсивно протекает реакция окисления углерода, происходящая с поглощением теплоты:

Для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород.

При реакции оксида железа с углеродом, пузырьки оксида углерода выделяются из жидкого металла, вызывая «кипение ванны». При «кипении» уменьшается содержание углерода в металле до требуемого, выравнивается температура по объ¨му ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырькам , а также газы, проникающие в пузырьки . Вс¨ это способствует повышению качества металла. Следовательно, этот этап - основной в процессе выплавки стали.

Также создаются условия для удаления серы. Сера в стали находится в виде сульфида (), который растворяется также в основном шлаке. Чем выше температура, тем большее количество сульфида железа растворяется в шлаке и взаимодействует с оксидом кальция :

Образующееся соединение растворяется в шлаке, но не растворяется в железе, поэтому сера удаляется в шлак.

Третий этап – раскисление стали заключается в восстановлении оксида железа, растворённого в жидком металле.

При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород – вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах.

Сталь раскисляют двумя способами: осаждающим и диффузионным.

Осаждающее раскисление осуществляется введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы, которые обладают большим сродством к кислороду, чем железо.

В результате раскисления восстанавливается железо и образуются оксиды: , которые имеют меньшую плотность, чем сталь, и удаляются в шлак.

Диффузионное раскисление осуществляется раскислением шлака. Ферромарганец, ферросилиций и алюминий в измельчённом виде загружают на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. Следовательно, оксид железа, растворённый в стали переходит в шлак. Образующиеся при этом процессе оксиды остаются в шлаке, а восстановленное железо переходит в сталь, при этом в стали снижается содержание неметаллических включений и повышается ее качество.

В зависимости от степени раскисления выплавляют стали:

а) спокойные,

б) кипящие,

в) полуспокойные.

Спокойная сталь получается при полном раскислении в печи и ковше.

Кипящая сталь раскислена в печи неполностью. Ее раскисление продолжается в изложнице при затвердевании слитка, благодаря взаимодействию оксида железа и углерода: ,

Образующийся оксид углерода выделяется из стали, способствуя удалению из стали азота и водорода, газы выделяются в виде пузырьков, вызывая её кипение. Кипящая сталь не содержит неметаллических включений, поэтому обладает хорошей пластичностью.

Полуспокойная сталь имеет промежуточную раскисленность между спокойной и кипящей. Частично она раскисляется в печи и в ковше, а частично – в изложнице, благодаря взаимодействию оксида железа и углерода, содержащихся в стали.

Легирование стали осуществляется введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы, у которых сродство к кислороду меньше, чем у железа (), при плавке и разливке не окисляются, поэтому их вводят в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа (), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда в ковш.

Способы выплавки стали

Чугун переделывается в сталь в различных по принципу действия металлургических агрегатах: мартеновских печах, кислородных конвертерах, электрических печах.

Производство стали в мартеновских печах

Мартеновский процесс (1864-1865, Франция). В период до семидесятых годов являлся основным способом производства стали. Способ характеризуется сравнительно небольшой производительностью, возможностью использования вторичного металла – стального скрапа. Вместимость печи составляет 200…900 т. Способ позволяет получать качественную сталь.

Мартеновская печь (рис.2.2.) по устройству и принципу работы является пламенной отражательной регенеративной печью. В плавильном пространстве сжигается газообразное

топливо или мазут. Высокая температура для получения стали в расплавленном состоянии обеспечивается регенерацией тепла печных газов.

Современная мартеновская печь представляет собой вытянутую в горизонтальном направлении камеру, сложенную из огнеупорного кирпича. Рабочее плавильное пространство ограничено снизу подиной 12, сверху сводом 11, а с боков передней 5 и задней 10 стенками. Подина имеет форму ванны с откосами по направлению к стенкам печи. В передней стенке имеются загрузочные окна 4 для подачи шихты и флюса, а в задней – отверстие 9 для выпуска готовой стали.

Рис.2.2. Схема мартеновской печи

Характеристикой рабочего пространства является площадь пода печи, которую подсчитывают на уровне порогов загрузочных окон. С обоих торцов плавильного пространства расположены головки печи 2, которые служат для смешивания топлива с воздухом и подачи этой смеси в плавильное пространство. В качестве топлива используют природный газ, мазут.

Для подогрева воздуха и газа при работе на низкокалорийном газе печь имеет два регенератора 1.

Регенератор – камера, в которой размещена насадка – огнеупорный кирпич, выложенный в клетку, предназначен для нагрева воздуха и газов.

Отходящие от печи газы имеют температуру 1500…1600 0 C. Попадая в регенератор, газы нагревают насадку до температуры 1250 0 C. Через один из регенераторов подают воздух, который проходя через насадку нагревается до 1200 0 C и поступает в головку печи, где смешивается с топливом, на выходе из головки образуется факел 7, направленный на шихту 6.

Отходящие газы проходят через противоположную головку (левую), очистные устройства (шлаковики), служащие для отделения от газа частиц шлака и пыли и направляются во второй регенератор.

Охлажд¨нные газы покидают печь через дымовую трубу 8.

После охлаждения насадки правого регенератора переключают клапаны, и поток газов в печи изменяет направление.

Температура факела пламени достигает 1800 0 C. Факел нагревает рабочее пространство печи и шихту. Факел способствует окислению примесей шихты при плавке.

Продолжительность плавки составляет 3…6 часов, для крупных печей – до 12 часов. Готовую плавку выпускают через отверстие, расположенное в задней стенке на нижнем уровне пода. Отверстие плотно забивают малоспекающимися огнеупорными материалами, которые при выпуске плавки выбивают. Печи работают непрерывно, до остановки на капитальный ремонт – 400…600 плавок.

В зависимости от состава шихты, используемой при плавке, различают разновидности мартеновского процесса:

– скрап-процесс, при котором шихта состоит из стального лома (скрапа) и 25…45 % чушкового передельного чугуна, процесс применяют на заводах, где нет доменных печей, но много металлолома.

– скрап-рудный процесс, при котором шихта состоит из жидкого чугуна (55…75 %), скрапа и железной руды, процесс применяют на металлургических заводах, имеющих доменные печи.

Футеровка печи может быть основной и кислой. Если в процессе плавки стали, в шлаке преобладают основные оксиды, то процесс называют основным мартеновским процессом, а если кислые – кислым .

Наибольшее количество стали производят скрап-рудным процессом в мартеновских печах с основной футеровкой.

В печь загружают железную руду и известняк, а после подогрева подают скрап. После разогрева скрапа в печь заливают жидкий чугун. В период плавления за счет оксидов руды и скрапа интенсивно окисляются примеси чугуна: кремний, фосфор, марганец и, частично, углерод. Оксиды образуют шлак с высоким содержанием оксидов железа и марганца (железистый шлак). После этого проводят период «кипения» ванны: в печь загружают железную руду и продувают ванну подаваемым по трубам 3 кислородом. В это время отключают подачу в печь топлива и воздуха и удаляют шлак.

Для удаления серы наводят новый шлак, подавая на зеркало металла известь с добавлением боксита для уменьшения вязкости шлака. Содержание в шлаке возрастает, а уменьшается.

В период «кипения» углерод интенсивно окисляется, поэтому шихта должна содержать избыток углерода. На данном этапе металл доводится до заданного химического состава, из него удаляются газы и неметаллические включения.

Затем проводят раскисление металла в два этапа. Сначала раскисление идет путем окисления углерода металла, при одновременной подаче в ванну раскислителей – ферромарганца, ферросилиция, алюминия. Окончательное раскисление алюминием и ферросилицием осуществляется в ковше, при выпуске стали из печи. После отбора контрольных проб сталь выпускают в ковш.

В основных мартеновских печах выплавляют стали углеродистые конструкционные, низко- и среднелегированные (марганцовистые, хромистые), кроме высоколегированных сталей и сплавов, которые получают в плавильных электропечах.

В кислых мартеновских печах выплавляют качественные стали. Применяют шихту с низким содержанием серы и фосфора.

Основными технико-экономическими показателями производства стали в мартеновских печах являются:

· производительность печи – съ¨м стали с 1м 2 площади пода в сутки (т/м 2 в сутки), в среднем составляет 10 т/м 2 ; р

· расход топлива на 1т выплавляемой стали, в среднем составляет 80 кг/т.

С укрупнением печей увеличивается их экономическая эффективность.

Производство стали в кислородных конвертерах.

Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму.

Первые опыты в 1933-1934 – Мозговой.

В промышленных масштабах – в 1952-1953 на заводах в Линце и Донавице (Австрия) – получил название ЛД-процесс. В настоящее время способ является основным в массовом производстве стали.

Кислородный конвертер – сосуд грушевидной формы из стального листа, футерованный основным кирпичом.

Вместимость конвертера – 130…350 т жидкого чугуна. В процессе работы конвертер может поворачиваться на 360 0 для загрузки скрапа, заливки чугуна, слива стали и шлака.

Шихтовыми материалами кислородно-конвертерного процесса являются жидкий передельный чугун, стальной лом (не более 30%), известь для наведения шлака, железная руда, а также боксит и плавиковый шпат для разжижения шлака.

Последовательность технологических операций при выплавке стали в кислородных конвертерах представлена на рис. 2.3.

Рис.2.3. Последовательность технологических операций при выплавке стали в кислородных конвертерах

После очередной плавки стали выпускное отверстие заделывают огнеупорной массой и осматривают футеровку, ремонтируют.

Перед плавкой конвертер наклоняют, с помощью завалочных машин загружают скрап рис. (2.3.а), заливают чугун при температуре 1250…1400 0 C (рис. 2.3.б).

После этого конвертер поворачивают в рабочее положение (рис. 2.3.в), внутрь вводят охлаждаемую фурму и через не¨ подают кислород под давлением 0,9…1,4 МПа. Одновременно с началом продувки загружают известь, боксит, железную руду. Кислород проникает в металл, вызывает его циркуляцию в конвертере и перемешивание со шлаком. Под фурмой развивается температура 2400 0 C. В зоне контакта кислородной струи с металлом окисляется железо. Оксид железа растворяется в шлаке и металле, обогащая металл кислородом. Растворенный кислород окисляет кремний, марганец, углерод в металле, и их содержание падает. Происходит разогрев металла теплотой, выделяющейся при окислении.

Фосфор удаляется в начале продувки ванны кислородом, когда ее температура невысока (содержание фосфора в чугуне не должно превышать 0,15 %). При повышенном содержании фосфора для его удаления необходимо сливать шлак и наводить новый, что снижает производительность конвертера.

Сера удаляется в течение всей плавки (содержание серы в чугуне должно быть до 0,07 %).

Подачу кислорода заканчивают, когда содержание углерода в металле соответствует заданному. После этого конвертер поворачивают и выпускают сталь в ковш (рис. 2.3.г), где раскисляют осаждающим методом ферромарганцем, ферросилицием и алюминием, затем сливают шлак (рис. 2.3.д).

В кислородных конвертерах выплавляют стали с различным содержанием углерода, кипящие и спокойные, а также низколегированные стали. Легирующие элементы в расплавленном виде вводят в ковш перед выпуском в него стали.

Плавка в конвертерах вместимостью 130…300 т заканчивается через 25…30 минут.

Технология получения железа в древности

Для получения железа из руды, сначала нужно получить крицу. Для этого сначала использовалась окисленная железная руда, которая чаще всего залегает у поверхности. После открытия ее свойств такие залежи быстро истощились в результате их интенсивной разработки.

Болотные руды распространены гораздо шире. Они образовались в субатлантическом периоде, когда в процессе заболачивания железная руда оседала на дно водоемов. Все средневековье черная металлургия использовала болотные руды. Ими даже платили повинности. Получение железа из руды в относительно большом количестве стало возможным после изобретения сыродутного горна. Это название появилось после изобретения дутья подогретым воздухом в доменных печах. В древности же металлурги подавали в горн сырой (холодный) воздух. При температуре 900 o с помощью углекислого газа, отнимающего у окиси железа кислород, происходит восстановление железа из руды и получается тесто или бесформенный, пропитанный шлаком пористый кусок – крица. Для осуществления этого процесса был необходим древесный уголь как источник углекислого газа. Крица после этого проковывалась, для того чтобы удалить из нее шлак. Сыродутный способ, иногда называемый варкой железа, неэкономичен, но он долгое время оставался единственным и неизменным способом получения черного металла.

Сначала железо выплавляли в обычных, закрытых сверху ямах, позднее стали строить глиняные печи-горны. В рабочее пространство горна слоями загружали измельченную руду и уголь, все это поджигалось, и через отверстия-сопла специальными (кожаными) мехами нагнетался воздух. Каменная порода оседает в шлак при температуре 1300-1400 o , при которой получается сталь – железо, содержащее от 0.3 до 1.2%. углерода. При остывании оно становится очень твердым. Чтобы получить чугун – плавкое железо с содержанием углерода 1.5-5%, – нужна более сложная конструкция горна с большим рабочим пространством. При этом температура плавления железа оказывалась ниже, и оно частично вытекало из горна вместе со шлаком. При остывании оно становилось хрупким, и его поначалу выбрасывали, но потом научились использовать. Чтобы получить из чугуна ковкое железо, нужно удалить из него углерод.

Технология создания железных сплавов

Первым устройством для получения железа из руды была одноразовая сыродутная печь. При огромном количестве недостатков, долгое время это был единственный способ получить металл из руды.

Древние люди долгое время жили богато и счастливо - каменные топоры делали из яшмы, а для получения меди пережигали малахит, но все хорошее имеет тенденцию кончаться. Одной из причин краха античной цивилизации Средиземноморья стало истощение минеральных ресурсов. Золото кончилось не в казне, а в недрах, олово иссякло даже на «Оловянных островах». Хотя медь и добывается на Синае и Кипре до сих пор, но те месторождения, которые разрабатываются сейчас, римлянам доступны не были. Среди прочего, кончилась и пригодная для сыродутной обработки руда. Только свинца ещё было много.

Впрочем, варварские племена, заселившие ставшую бесхозной Европу, долгое время не знали, что недра её истощены предшественниками. Учитывая громадное падение объёма производства металлов, тех ресурсов, которыми римляне побрезговали, долгое время хватало. Позже, металлургия стала возрождаться в первую очередь в Германии и Чехии - то есть, там, куда римляне не добрались с кирками и тачками.

Более высокую ступень в развитии чёрной металлургии представляли собой постоянные высокие печи называемые в Европе штукофенами. Это действительно была высокая печь - с четырёхметровой трубой для усиления тяги. Мехи штукофена качались уже несколькими людьми, а иногда и водяным двигателем. Штукофен имел дверцы, через которые раз в сутки извлекалась крица.

Изобретены штукофены были в Индии в начале первого тысячелетия до новой эры. В начале нашей эры они попали в Китай, а в VII веке вместе с «арабскими» цифрами арабы заимствовали из Индии и эту технологию. В конце XIII века штукофены стали появляться в Германии и Чехии (а ещё до того были на юге Испании) и в течение следующего века распространились по всей Европе.

Производительность штукофена была несравненно выше, чем сыродутной печи - в день он давал до 250 кг железа, а температура плавления в нем оказывалась достаточна для науглероживания части железа до состояния чугуна. Однако штукофенный чугун при остановке печи застывал на её дне, смешиваясь со шлаками, а очищать металл от шлаков умели тогда только ковкой, но как раз ей-то чугун и не поддавался. Его приходилось выбрасывать.

Иногда, впрочем, штукофенному чугуну пытались найти какое-то применение. Например, древние индусы отливали из грязного чугуна гробы, а турки в начале XIX века - пушечные ядра. Трудно судить, как гробы, но ядра из него получались - так себе.

Ядра для пушек из железистых шлаков в Европе отливали еще в конце XVI в. Из литой брусчатки делались дороги. В Нижнем Тагиле до сих пор сохранились здания с фундаментами из литых шлаковых блоков.

Металлурги давно заметили связь между температурой плавления и выходом продукта - чем выше она была, тем большую часть содержащегося в руде железа удавалось восстановить. Потому рано или поздно им приходила мысль форсировать штукофен предварительным подогревом воздуха и увеличением высоты трубы. В середине XV века в Европе появились печи нового типа - блауофены, которые сразу преподнесли сталеварам неприятный сюрприз.

Более высокая температура плавления действительно значительно повысила выход железа из руды, но она же повысила и долю железа науглероживающегося до состояния чугуна. Теперь уже не 10 %, как в штукофене, а 30 % выхода составлял чугун - «свиное железо», ни к какому делу не годное. В итоге, выигрыш часто не окупал модернизации.

Блауофенный чугун, как и штукофенный, застывал на дне печи, смешиваясь со шлаками. Он выходил несколько лучшим, так как его самого было больше, следовательно, относительное содержание шлаков выходило меньше, но продолжал оставаться малопригодным для литья. Чугун получаемый из блауофенов оказывался уже достаточно прочен, но оставался ещё очень неоднородным - из него выходили только предметы простые и грубые - кувалды, наковальни. Уже прилично выходили пушечные ядра.

Кроме того, если в сыродутных печах могло быть получено только железо, которое потом науглероживалось, то в штукофенах и блауофенах внешние слои крицы оказывались состоящими из стали. В блауофенных крицах стали было даже больше, чем железа. С одной стороны, это казалось хорошо, но, вот, разделить-то сталь и железо оказывалось весьма затруднительно. Содержание углерода становилось трудно контролировать. Только долгой ковкой можно было добиться однородности его распределения.

В своё время, столкнувшись с этими затруднениями, индусы не стали двигаться дальше, а занялись тонким усовершенствованием технологии и пришли к получению булата. Но, индусов в ту пору интересовало не количество, а качество продукта. Европейцы, экспериментируя с чугуном, скоро открыли передельный процесс, поднимающий металлургию железа на качественно новый уровень.

Следующим этапом в развитии металлургии стало появление доменных печей. За счёт увеличения размера, предварительного подогрева воздуха и механического дутья, в такой печи все железо из руды превращалось в чугун, который расплавлялся и периодически выпускался наружу. Производство стало непрерывным - печь работала круглосуточно и не остывала. За день она выдавала до полутора тонн чугуна. Перегнать же чугун в железо в горнах было значительно проще, чем выколачивать его из крицы, хотя ковка все равно требовалась - но теперь уже выколачивали шлаки из железа, а не железо из шлаков.

Доменные печи впервые были применены на рубеже XV-XVI веков в Европе. На Ближнем Востоке и в Индии эта технология появилась только в XIX веке (в значительной степени, вероятно, потому, что водяной двигатель из-за характерного дефицита воды на Ближнем Востоке не употреблялся). Наличие в Европе доменных печей позволило ей обогнать в XVI веке Турцию если не по качеству металла, то по валу. Это оказало несомненное влияние на исход борьбы, особенно когда оказалось, что из чугуна можно лить пушки.

С начала XVII века европейской кузницей стала Швеция, производившая половину железа в Европе. В середине XVIII века её роль в этом отношении стала стремительно падать в связи с очередным изобретением - применением в металлургии каменного угля.

Прежде всего надо сказать, что до XVIII века включительно каменный уголь в металлургии практически не использовался - из-за высокого содержания вредных для качества продукта примесей, в первую очередь - серы. С XVII века в Англии каменный уголь, правда, начали применять в пудлинговочных печах для отжига чугуна, но это позволяло достичь лишь небольшой экономии древесного угля - большая часть топлива расходовалась на плавку, где исключить контакт угля с рудой было невозможно.

Среди многих металлургических профессий того времени, пожалуй, самой тяжелой была профессия пудлинговщика. Пудлингование было основным способом получения железа почти на протяжении всего XIX в. Это был очень тяжелый и трудоемкий процесс. Работа при нем шла так: На подину пламенной печи загружались чушки чугуна; их расплавляли. По мере выгорания из металла углерода и других примесей температура плавления металла повышалась и из жидкого расплава начинали «вымораживаться» кристаллы довольно чистого железа. На подине печи собирался комок слипшейся тестообразной массы. Рабочие-пудлинговщики приступали к операции накатывания крицы при помощи железного лома. Перемешивая ломом массу металла, они старались собрать вокруг лома комок, или крицу, железа. Такой комок весил до 50 - 80 кг и более. Крицу вытаскивали из печи и подавали сразу под молот - для проковки с целью удаления частиц шлака и уплотнения металла.

Устранять серу коксованием научились в Англии в 1735 году, после чего возможность использовать для выплавки железа большие запасы каменного угля. Но за пределами Англии эта технология распространилась только в XIX веке.

Потребление же топлива в металлургии уже тогда было огромно - домна пожирала воз угля в час. Древесный уголь превратился в стратегический ресурс. Именно изобилие дерева в самой Швеции и принадлежащей ей Финляндии позволило шведам развернуть производство таких масштабов. Англичане, имевшие меньше лесов (да и те были зарезервированы для нужд флота), вынуждены были покупать железо в Швеции до тех пор, пока не научились использовать каменный уголь.

Электрический и индукционный способы выплавки железа

Разнообразие составов сталей очень затрудняет их выплавку. Ведь в мартеновской печи и конвертере атмосфера окислительная, и такие элементы, как хром, легко окисляются и переходят в шлак, т.е. теряются. Значит, чтобы получить сталь с содержанием хрома 18%, в печь надо дать гораздо больше хрома, чем 180 кг на тонну стали. А хром – металл дорогой. Как найти выход из этого положения?

Выход был найден в начале XX в. Для выплавки металла было предложено использовать тепло электрической дуги. В печь круглого сечения загружали металлолом, заливали чугун и опускали угольные или графитовые электроды. Между ними и металлом в печи («ванне») возникала электрическая дуга с температурой около 4000°C. Металл легко и быстро расплавлялся. А в такой закрытой электропечи можно создавать любую атмосферу – окислительную, восстановительную или совершенно нейтральную. Иными словами, можно предотвратить выгорание ценных элементов. Так была создана металлургия качественных сталей.

Позднее был предложен еще один способ электроплавки – индукционный. Из физики известно, что если металлический проводник поместить в катушку, по которой проходит ток высокой частоты, то в нем индуцируется ток и проводник нагревается. Этого тепла хватает, чтобы за определенное время расплавить металл. Индукционная печь состоит из тигля, в футеровку которого вделана спираль. По спирали пропускают ток высокой частоты, и металл в тигле расплавляется. В такой печи тоже можно создать любую атмосферу.

В электрических дуговых печах процесс плавки идет обычно в несколько стадий. Сначала из металла выжигают ненужные примеси, окисляя их (окислительный период). Затем из печи убирают (скачивают) шлак, содержащий окислы этих элементов, и загружают ферросплавы – сплавы железа с элементами, которые нужно ввести в металл. Печь закрывают и продолжают плавку без доступа воздуха (восстановительный период). В результате сталь насыщается требуемыми элементами в заданном количестве. Готовый металл выпускают в ковш и разливают.

Химические реакции при получении железа

В современной промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (Fe 3 O 4).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод кокса окисляется до монооксида углерода (угарного газа) кислородом воздуха:

2C + O 2 → 2CO.

В свою очередь, угарный газ восстанавливает железо из руды:

3CO + Fe 2 O 3 → 2Fe + 3CO 2 .

Флюс добавляется для извлечения нежелательных примесей из руды, в первую очередь силикатов, таких как кварц (диоксид кремния). Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Против других примесей используют другие флюсы.

Действие флюса: карбонат кальция под действием тепла разлагается до оксида кальция (негашёная известь):

CaCO 3 → CaO + CO 2 .

Оксид кальция соединяется с диоксидом кремния, образуя шлак:

CaO + SiO 2 → CaSiO 3 .

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности, и его можно сливать отдельно от металла. Шлак затем употребляется в строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишний углерод и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используют и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, содержащими водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями как сера и фосфор - обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей.

Известное человечеству носило космическое происхождение, а, точнее говоря, метеоритное. Как инструментальный материал оно стало использоваться примерно 4 тыс. лет до нашей эры. Технология выплавки металла несколько раз появилась на свет и терялась в результате войн и смут, но, как считают историки, первыми освоили выплавку хетты.

Стоит отметить, что речь идет о сплавах железа с небольшим количеством примесей. Химически чистый металл стало возможным получить лишь с появлением современных технологий. Данная статья расскажет вам в подробностях об особенностях производства металла методом прямого восстановления, кричном, губчатого, сыродутного, горячебрикетированного железа, коснемся изготовления хлорного и чистого вещества.

Для начала стоит рассмотреть способ производство железа из железной руды. Железо – элемент весьма распространенный. По содержанию в земной коре металл занимает 4 место среди всех элементов и 2 среди металлов. В литосфере железо представлено обычно в виде силикатов. Наибольшее его содержание отмечено в основных и ультраосновных породах.

Практически все горные руды содержат какую-то толику железа. Однако разрабатываются лишь те породы, в которых доля элемента имеет промышленное значение. Но и в этом случае количество пригодных для разработки минералов более чем велико.

  • Прежде всего, это железняк – красный (гематит), магнитный (магнитит) и бурый (лимонит). Это сложные оксиды железа с содержанием элемента в 70–74%. Бурый железняк чаще встречается в корах выветривания, где формирует так называемые «железные шляпы» толщиной до нескольких сот метров. Остальные имеют в основном осадочное происхождение.
  • Очень распространен сульфид железа – пирит или серный колчедан, однако железной рудой он не считается и идет на производство серной кислоты.
  • Сидерит – карбонат железа, включает до 35%, это руда средняя по содержанию элемента.
  • Марказит – включает до 46,6%.
  • Миспикель – соединение с мышьяком и серой, содержит до 34,3% железа.
  • Леллингит – включает всего 27,2% элемента и считается рудой бедной.

Минеральные породы классифицируют по доле железа таким образом:

  • богатые – с содержанием металла более, чем 57%, с долей кремнезема менее 8–10%, и примесью серы и фосфора менее 0,15%. Такие руды не обогащаются, сразу отправляются на производство;
  • руда со средним содержанием включает не менее 35% вещества и нуждается в обогащении;
  • бедные железные руды должны содержать не менее 26%, и тоже обогащаются перед отправкой в цех.

Общий технологический цикл производства железа в виде чугуна, стали и проката рассмотрен в этом видео:

Разработка месторождений

Существует несколько методов добычи руды. Применяют тот, который находят наиболее экономически целесообразным.

  • Открытый способ разработки – или карьерный. Рассчитан на неглубокое залегание минеральной породы. Для добычи выкапывают карьер глубиной до 500 м и шириной, зависящей от мощности месторождения. Железную руду извлекают из карьера и транспортируют машинами, рассчитанными на перевозку тяжелых грузов. Как правило, так добывают именно богатую руду, так что необходимости в ее обогащении не возникает.
  • Шахтный – при залегании породы на глубине 600–900 м, бурят шахты. Такая разработка куда более опасна, поскольку связана со взрывными подземными работами: обнаруженные пласты взрывают, а затем собранную руду транспортируют наверх. При всей своей опасности этот метод считается более эффективным.
  • Гидродобыча – в этом случае бурят скважины на определенную глубину. В шахту спускают трубы и подают воду под очень большим давлением. Водная струя дробит породу, а затем железную руду поднимают на поверхность. Скважинная гидродобыча мало распространена, так как требует больших затрат.

Технологии производства железа

Все металлы и сплавы разделяют на цветные (вроде , и т.п.) и черные. К последним относятся чугун и сталь. 95% всех металлургических процессов приходится на черную металлургию, .

Несмотря на невероятное разнообразие получаемых сталей технологий изготовления не так уж много. Кроме того, чугун и сталь – это не совсем 2 разных продукта, чугун – обязательная предварительная стадия получения стали.

Классификация продукции

И чугун, и сталь относят к сплавам железа, где легирующим компонентом выступает углерод. Доля его невелика, но он придает металлу очень высокую твердость и некоторую хрупкость. Чугун, поскольку содержит больше углерода, более хрупкий, чем сталь. Менее пластичен, но отличается лучшей теплоемкостью и стойкостью к внутреннему давлению.

Чугун получают при доменной плавке. Различают 3 вида:

  • серый или литейный – получают методом медленного остывания. Сплав содержит от 1,7 до 4,2% углерода. Серый чугун хорошо обрабатывается механическими инструментами, прекрасно заполняет формы, поэтому его используют для производства литьевых изделий;
  • белый – или передельный, получают при быстром остывании. Доля углерода – до 4,5%. Может включать дополнительные примеси , графита, марганца. Белый чугун отличается твердостью и хрупкостью и в основном применяется для выплавки стали;
  • ковкий – включает от 2 до 2,2% углерода. Производится из белого чугуна путем длительного прогревания отливок и медленного длительного охлаждения.

Сталь может включать не более 2% углерода, получают ее 3 основными способами. Но в любом случае суть сталеварения сводится к отжигу нежелательных примесей кремния, марганца, серы и так далее. Кроме того, если получают легированную сталь, то в процессе изготовления вводят дополнительные ингредиенты.

По назначению сталь разделяют на 4 группы:

  • строительная – применяют в виде проката без термической обработки. Это материал для сооружения мостов, каркасов, изготовления вагонов и так далее;
  • машиностроительная – конструкционная, относится к категории углеродистой стали, включает не более 0,75% углерода и не более 1,1% марганца. Используется для производства разнообразных машинных деталей;
  • инструментальная – также углеродистая, но с низким содержанием марганца – не более 0,4%. Из нее производят разнообразный инструмент, в частности, металлорежущий;
  • сталь специального назначения – к этой группе относят все сплавы с особыми свойствами: жаропрочная сталь, нержавеющая, кислотоупорная и так далее.

Предварительный этап

Даже богатую руду перед выплавкой чугуна необходимо подготовить – освободить от пустой породы.

  • Агломерационный метод – руда дробится, размалывается и засыпается вместе с коксом на ленту агломерационной машины. Лента проходит через горелки, где под действием температуры загорается кокс. При этом руда спекается, а сера и другие примеси выгорают. Полученный агломерат подается в бункерные чаши, где охлаждается водой и продувается потоком воздуха.
  • Метод магнитной сепарации – руду дробят и подают на магнитный сепаратор, поскольку железо обладает способностью намагничиваться, минералы при промывании водой остаются в сепараторе, а пустая порода вымывается. Затем из полученного концентрата делает окатыши и горячебрикетированное железо. Последние допускается использовать для приготовления стали, минуя стадию получения чугуна.

Данное видео расскажет во всех подробностях о производстве железа:

Выплавка чугуна

Чугун выплавляют из руды в доменной печи:

  • приготавливают шихту – агломерат, окатыши, кокс, известняк, доломит и прочее. Состав зависит от вида чугуна;
  • шихту скиповым подъемником загружают в доменную печь. Температура в печи – 1600 С, снизу подается горячий воздух;
  • при такой температуре железо начинает плавиться, а кокс гореть. При этом происходит восстановление железа: сначала при сгорании угля получают угарный газ. Угарный газ реагирует с оксидом железа с получением чистого металла и углекислого газа;
  • флюс – известняк, доломит, добавляется в шихту для перевода нежелательных примесей в форму, которую легче устранить. Например, оксиды кремния не плавятся при такой низкой температуре и отделить их от железа невозможно. Но при взаимодействии с оксидом кальция, получаемым разложением известняка, кварц превращается в силикат кальция. Последний плавится при такой температуре. Он легче, чем чугун и остается плавать на поверхности. Отделить его достаточно просто – шлак периодически выпускают через летки;
  • жидкий чугун и шлак по разным каналам стекают в ковши.

Полученный чугун в ковшах транспортируют в сталеплавильный цех или к разливочной машине, где получают чугунные слитки.

Выплавка стали

Превращение чугуна в сталь производится 3 способами. В процессе выплавки выжигается лишний углерод, нежелательные примеси, а также добавляются необходимые компоненты – при варке специальных сталей, например.

  • Мартеновский – самый популярный метод получения, поскольку обеспечивает высокое качество стали. Расплавленный или твердый чугун с добавкой руды или скрапа подают в мартеновскую печь и плавят. Температура – около 2000 С, поддерживается за счет горения газообразного топлива. Суть процесса сводится к выжиганию углерода и других примесей из железа. Необходимые добавки, если речь идет о легированной стали, добавляют в конце выплавки. Готовый продукт разливают в ковши или на слитки в изложницы.
  • Кислородно-конвертный метод – или бессемеровский. Отличается более высокой производительностью. Технология включает продувку сквозь толщу чугуна сжатого воздуха под давлением в 26 кг/кв. см. При этом углерод сгорает, и чугун становится сталью. Реакция экзотермическая, так что температура при этом повышается до 1600 С. Чтобы повысить качество продукции, сквозь чугун продувают смесь воздуха с кислородом или даже чистый кислород.
  • Электроплавильный метод считается самым эффективным. Чаще всего его используют для получения многократно легированных сталей, так как технология выплавки в этом случае исключает попадание ненужных примесей из воздуха или газа. Температура в печидля производства железа достигается максимальная – около 2200 С за счет электродуги.

Прямое получение

С 1970 года стал использоваться и способ прямого восстановления железа. Метод позволяет миновать затратную стадию получения чугуна в присутствии кокса. Первые установки такого рода не отличались производительностью, но на сегодня способ стал довольно известен: оказалось, что в качестве восстановителя можно применять природный газ.

Сырьем для восстановления служат окатыши. Их загружают в шахтную печь, прогревают и продувают продуктом конверсии газа – угарный газ, аммиак, но в основном водород. Реакция происходит при температуре в 1000 С, при этом водород восстанавливает железо из оксида.

О производителях традиционного (не хлорного и т.п.) железа в мире поговорим ниже.

Известные производители

Самая большая доля месторождений железной руды приходится на Россию и Бразилию – 18%, Австралию – 14%, а также Украину – 11%. Крупнейшими экспортерами являются Австралия, Бразилия и Индия. Пик стоимости железа наблюдался в 2011 году, когда тонна металла оценивалась в 180 $. К 2016 цена упала до 35 $ за тонну.

К наиболее крупным производителям железа относят следующие компании:

  • Vale S. A. – бразильская горнодобывающая компания, крупнейший производитель железа и ;
  • BHP Billiton – австралийская компания. Основное ее направление – добыча нефти и газа. Но при этом она же является крупнейшим поставщиком меди и железа;
  • Rio Tinto Group – австралийско-британский концерн. Rio Tinto Group добывает и производит золото, железо, алмазы и уран;
  • Fortescue Metals Group – еще одна австралийская компания, специализирующаяся по добыче руды и производству железа;
  • В России крупнейшим производителем выступает Евразхолдинг – металлургическая и горнодобывающая компания. Также известны на мировом рынке Металлинвест и ММК;
  • ООО «Метинивест холдинг» – украинская горно-металлургическая компания.

Распространенность железа велика, способ добычи достаточно прост, да и выплавка в конечном счете – процесс экономически выгодный. Вместе с физическими характеристиками производство и обеспечивает железу роль главного конструкционного материала.

Изготовление хлорного железа показано в этом видеоролике:

Железо в чистом виде – это пластичный металл серого цвета, легко подвергаемый обработке. И всё же, для человека элемент Fe более практичен в сочетании с углеродом и другими примесями, которые позволяют образовывать металлические сплавы – стали и чугуны. 95% – именно столько всей производимой на планете металлической продукции содержит железо в качестве основного элемента.

Железо: история

Первые железные изделия, изготовленные человеком, датированы учёными IV тыс. до н. э., причем исследования показали, что для их производства использовалось метеоритное железо, для которого характерно 5-30-процентное содержание никеля. Интересно, но пока человечество не освоило добычу Fe путём его переплавки, железо ценилось дороже золота. Объяснялось это тем, что более крепкая и надежная сталь куда больше подходила для изготовления орудий труда и оружия, нежели медь и бронза.

Первый чугун научились получать древние римляне: их печи могли повышать температуру руды до 1400 о С, в то время как чугуну было достаточно 1100-1200 о С. Впоследствии они же получили и чистую сталь, температура плавления которой, как известно, составляет 1535 градуса по Цельсию.

Химические свойства Fe

С чем взаимодействует железо? Железо взаимодействует с кислородом, что сопровождается образованием оксидов; с водой в присутствии кислорода; с серной и соляной кислотами:

  • 3Fe+2O 2 = Fe 3 O 4
  • 4Fe+3O 2 +6H 2 O = 4Fe(OH) 3
  • Fe+H 2 SO 4 = FeSO 4 +H 2
  • Fe+2HCl = FeCl 2 +H 2

Также железо реагирует на щелочи, только если они представляют собой расплавы сильных окислителей. Железо не реагирует с окислителями при обычной температуре, однако всегда начинает вступать в реакцию при её повышении.

Применение железа в строительстве

Применение железа строительной отраслью в наши дни нельзя переоценить, ведь металлоконструкции являются основой абсолютно любого современного строения. В этой сфере Fe используется в составе обычных сталей, литейного чугуна и сварочного железа. Данный элемент находится везде, начиная с ответственных конструкций и заканчивая анкерными болтами и гвоздями.

Возведение строительных конструкций из стали обходится гораздо дешевле, к тому же здесь можно говорить и о более высоких темпах строительства. Это заметно увеличивает использование железа в строительстве, в то время как сама отрасль осваивает применение новых, более эффективных и надежных сплавов на основе Fe.

Использование железа в промышленности

Использование железа и его сплавов – чугуна и стали – это основа современного машино-, станко-, авиа-, приборостроения и изготовления прочей техники. Благодаря цианидам и оксидам Fe функционирует лакокрасочная промышленность, сульфаты железа применяются при водоподготовке. Тяжелая промышленность и вовсе немыслима без использования сплавов на основе Fe+C. Словом, Железо – это незаменимый, но вместе с тем доступный и относительно недорогой металл, который в составе сплавов имеет практически неограниченную сферу применения.

Применение железа в медицине

Известно, что в каждом взрослом человеке содержится до 4 грамм железа. Этот элемент крайне важен для функционирования организма, в частности, для здоровья кровеносной системы (гемоглобин в эритроцитах). Существует множество лекарственных препаратов на основе железа, которые позволяют повышать содержание Fe во избежание развития железодефицитной анемии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более.

Основными железными рудами являются:

Магнетит (магнитный железняк) - Fe3O4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии.

Гематит (железный блеск, кровавик) - Fe2O3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе.

Лимонит (бурый железняк) - Fe2O3*nH2O содержит до 60% железа, месторождения встречаются в Крыму.

Пирит (серный колчедан, железный колчедан, кошачье золото) - FeS2 содержит примерно 47% железа, месторождения встречаются на Урале.

Способы получения железа

В настоящее время основным промышленным способом переработки железных руд является производство чугуна доменным процессом. Чугун - это сплав железа, содержащий 2,2-4% углерода, кремний, марганец, фосфор, серу. В дальнейшем большая часть чугуна подвергается переделу на сталь. Сталь отличается от чугуна главным образом меньшим содержанием углерода (до 2%), фосфора и серы.

В последнее время большое внимание уделяется разработке методов прямого получения железа из руд без осуществления доменного процесса. Еще в 1899 г. Д. И. Менделеев писал: "Я полагаю, что придет со временем опять пора искать способов прямого получения железа и стали из руд, минуя чугун". Слова великого химика оказались пророческими: такие способы найдены и реализованы в промышленности.

Первоначально прямое восстановление железа проводили в слегка наклонных вращающихся печах, похожих на печи, в которых получают цемент. В печь непрерывно загружают руду и уголь, которые постепенно перемещаются к выходу, противотоком идет нагретый воздух. За время нахождения в печи руда постепенно подогревается (до температур ниже температуры давления железа) и восстанавливается. Продуктом такого производства является смесь кусков железа и шлака, которую легко разделить, так как железо до плавления не доводится.

Интерес к прямому восстановлению железа из руд возрос и последнее время в связи с тем, что, кроме экономии кокса, оно дает возможность получать железо высокой чистоты. Получение чистых металлов - одна из важнейших задач современной металлургии. Такие металлы необходимы многим отраслям промышленности.

Получить технически чистое железо прямым восстановлением можно, если руду подвергнуть обогащению: существенно повысить массовую долю железа, отделив пустую породу, и снизить содержание вредных примесей (таких, как сера и фосфор).

Упрощенно процесс подготовки железной руды к восстановлению можно представить так. Руду измельчают в дробильных устройствах и подают на магнитный сепаратор. Он представляет собой барабан с электромагнитами, на который при помощи транспортера подается измельченная руда. Пустая порода свободно проходит через магнитное поле и падает. Зерна руды, содержащие магнитные минералы железа, намагничиваются, притягиваются и отделяются от барабана позднее пустой породы. Такую магнитную сепарацию можно повторить несколько раз.

Лучше всего подвергаются магнитному обогащению руды, содержащие магнетит Fе3О4, который обладает сильными магнитными свойствами. Для слабомагнитных руд иногда перед обогащением применяют магнетизирующий обжиг - восстановление оксидов железа в руде до магнетита:

3Fe2O2 + H2 = 2Fe3O4 + H2O

ЗFе2О3 + CO = 2Fе3О4 + CO2

После магнитной сепарации руду обогащают методом флотации. Для этого руда помещается в емкость с водой, где растворяют флотационные реагенты - вещества, которые избирательно адсорбируются на поверхности полезного минерала и не адсорбируются на пустой породе. В результате адсорбции флотореагента частицы минерала не смачиваются водой и не тонут.

Через раствор пропускают воздух, пузырьки которого прикрепляются к кусочкам минерала и поднимают их на поверхность. Частицы пустой породы хорошо смачиваются водой и падают на дно. Обогащенную руду собирают с поверхности раствора вместе с пеной.

В результате полного процесса обогащения содержание железа в руде может быть повышено до 70-72%. Для сравнения отметим, что содержание железа в чистом оксиде Fе3О4 составляет 72,4%. Так что содержание примесей в обогащенной руде весьма незначительно. К настоящему времени предложено более семидесяти методов прямого получения железа из руд с использованием твердых и газообразных восстановителей. Рассмотрим принципиальную схему одного из них, который используется в нашей стране.

Процесс проводят в вертикальной печи, в которую сверху подают обогащенную руду, а снизу - газ, служащий восстановителем. Этот газ получают конверсией природного газа (т.е. сжиганием природного газа в недостатке кислорода). "Восстановительный" газ содержит 30% СО, 55% Н2 и 13% воды и углекислого газа. Следовательно, восстановителями оксидов железа служат оксид углерода (II) и водород:

Fe2O4 + 4H2 = 3Fe + 4H2O

Fe3O4 + 4CO = 3Fe + 4CO2

Восстановление ведется при температуре 850 - 900°С, что ниже температуры плавления железа (1539°). СО и Н2, которые не прореагировали с оксидами железа, вновь возвращаются в печь после удаления из них пыли, воды и углекислого газа. Эти "оборотные газы" служат и для охлаждения получаемого продукта. В результате процесса прямого восстановления руды получается железо в виде металлических "окатышей" или "губки", содержание металла в которых может достигать 98 - 99%. Если прямым восстановлением получают сырье для дальнейшей выплавки стали, то оно обычно содержит 90 - 93% железа.

Для многих современных отраслей техники требуется железо еще, более высокой степени чистоты. Очистку технического железа проводят карбонильным методом. Карбонилы - это соединения металлов с оксидом углерода (II) СО. Железо взаимодействует с СО при повышенном давлении и температуре 100-200°, образуя пентакарбонил:

Fе + 5СО = Fе(СО)5

Пентакарбонил железа - жидкость, которую можно легко отделить от примесей перегонкой. При температуре около 250° карбонил разлагается, образуя порошок железа:

Fе(СО)5 = Fе + 5СО

Если полученный порошок подвергнуть спеканию в вакууме или атмосфере водорода, то получится металл, содержащий 99,98- 99,999% железа. Еще более глубокой степени очистки железа (до 99,9999%) можно достичь методом зонной плавки.

Железо высокой чистоты нужно прежде всего для изучения его свойств, т.е. для научных целей. Если не удалось бы получить чистое железо, то не узнали бы, что железо - мягкий, легко обрабатываемый металл. Химически чистое железо намного более инертно, чем железо техническое.

Важной отраслью использования чистого железа является производство специальных ферросплавов, свойства которых ухудшаются в присутствии примесей

Физические свойства простого вещества железа

Железо -- типичный металл, в свободном состоянии -- серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности -- углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» -- группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.

Для железа характерен полиморфизм, оно имеет четыре кристаллические модификации:

· до 769 °C существует?-Fe (феррит) с объёмноцентрированной кубической решёткой и свойствами ферромагнетика (769 °C ? 1043 K -- точка Кюри для железа);

· в температурном интервале 769--917 °C существует?-Fe, который отличается от?-Fe только параметрами объёмноцентрированной кубической решётки и магнитными свойствами парамагнетика;

· в температурном интервале 917--1394 °C существует?-Fe (аустенит) с гранецентрированной кубической решёткой;

· выше 1394 °C устойчиво?-Fe с объёмноцентрированной кубической решёткой.

Металловедение не выделяет?-Fe как отдельную фазу и рассматривает её как разновидность?-Fe. При нагреве железа или стали выше точки Кюри (769 °C ? 1043 K) тепловое движение ионов расстраивает ориентацию спиновых магнитных моментов электронов, ферромагнетик становится парамагнетиком -- происходит фазовый переход второго рода, но фазового перехода первого рода с изменением основных физических параметров кристаллов не происходит.

Для чистого железа при нормальном давлении, с точки зрения металловедения, существуют следующие устойчивые модификации:

· от абсолютного нуля до 910 °C устойчива?-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой;

· от 910 до 1400 °C устойчива?-модификация с гранецентрированной кубической (ГЦК) кристаллической решёткой;

· от 1400 до 1539 °C устойчива?-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой.

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря?--? переходам кристаллической решётки происходит термообработка стали. Без этого явления железо как основа стали не получило бы такого широкого применения.

Железо относится к умеренно тугоплавким металлам. В ряду стандартных электродных потенциалов железо стоит до водорода и легко реагирует с разбавленными кислотами. Таким образом, железо относится к металлам средней активности.

Температура плавления химически чистого железа равна 1539о С. Технически чистое железо, полученное путем окислительного рафинирования, плавится при температуре около 1530о С.

Теплота плавления железа составляет 15,2 кДж/моль или 271,7 кДж/кг. Кипение железа происходит при температуре 2735о С, хотя авторами некоторых исследований установлены значительно более высокие значения температуры кипения железа (3227 - 3230о С). Теплота испарения железа составляет 352,5 кДж/моль или 6300 кДж/кг.


© 2024
reaestate.ru - Недвижимость - юридический справочник