09.08.2019

Изготовление серы. Свой бизнес по производству серы. Получение аморфной серы


Сегодня именно химическая промышленность потребляет наибольшее количество серы. Наиболее важной является серная кислота. Именно поэтому на ее изготовление уходит почти половина серы, которая добывается по всему миру. Из трехсот кг серы при сжигании получается около одной тонны серной кислоты.

Еще одной отраслью промышленности, которая неразрывно связана с добываемой серой и потребляет ее существенную часть, является производство бумаги. Чтобы получить 17 целлюлозы требуется использовать не меньше ста кг серы.

Применение серы в резиновой промышленности

Для того, чтобы превратить каучук в резину чаще всего используется сера. При смешивании с серой и нагревании до нужной температуры каучук приобретает свойства, за которые очень ценится среди потребителей, – упругость и эластичность. Этот процесс еще называют вулканизацией.

Она бывает:

  1. Горячей. Предложена Гудиром в 1839 году. Смесь каучука и серы нагревается примерно до 150 градусов Цельсия.
  2. Холодной. Предложена Парксом в 1846 году. Каучук не нагревается, а обрабатывается с раствором хлорида серы S2C12.

Вулканизацию проводят с целью появления в веществе связей между полимерными группами.

Большинство важных физико-механических свойств материала, прошедшего вулканизацию, зависят от того, из чего состоят, как распределены и сколько энергии содержат связи -С-Sn-С-. Например, при разной концентрации добавляемой серы могут получиться абсолютно различные материалы с отличающимися свойствами.

Сера в сельском хозяйстве и медицине

Сера в чистом виде и в соединениях с другими элементами с успехом применяется для сельскохозяйственных целей. Она также значима для растений, как фосфор. Удобрения, имеющие в своем составе серу, положительно влияют и на качество собранного урожая, и на его количество.

Опытным путем ученые выявили влияние серы на устойчивость злаков к морозам. Она провоцирует образование органических веществ, которые содержит сульфгидрильные группы-S-Н. Благодаря этому повышается морозостойкость растения за счет гидрофильности белков и изменения внутренней структуры. Еще одним способом использовать серу для сельскохозяйственных нужд является ее применение в предотвращении болезней, в основном хлопчатника и винограда.

Для медицинских целей может быть использована и чистая сера, а также ее соединения с другими элементами. Основа для многих мазей, которые используются для лечения разных грибковых заболеваний кожи – это мелкодисперсная сера. Большинство препаратов сульфамидной группы – это ничто иное, как соединения разных веществ с серой: сульфадимезин, норсульфазол, белый стрептоцид.

Сегодня объем добычи серы превышает необходимое количество сырья для промышленности. Ее добывают не только из глубины земли, но и из газов или при очищении топлива. В связи с этим придумываются новые способы применения вещества, например, в строительстве. Так, в Канаде изобрели пенопласт из серы, который планируется использовать при укладке дорог и для прокладывания трубопровода за пределами полярного круга. А в Монреале был построен первый в мире дом из необычных по составу блоков, которые на треть состоят из серы (остальное песок). Для изготовления таких блоков используют металлические формы, в которых нагревают смесь до температуры больше 100 градусов Цельсия. Они такие же прочные и устойчивые к износу, как их цементные аналоги. Избежать окисления поможет простая обработка синтетическим лаком. Из таких блоков можно построить гараж или склад, магазин или дом.

Сегодня все чаще можно встретить информацию о появлении новых стройматериалов, которые содержат серу. Ни для кого уже не секрет, что при использовании серы получается асфальтовое покрытие, обладающее отличными свойствами. Оно может сравниться с покрытием из гравия и даже превзойти его. Достаточно выгодно использовать его при строительстве автострады. Для получения такого состава необходимо смешать одну часть асфальта, две части серы и 13 частей песка.

Потребность в данном сырье растет. Продажи серы в долгосрочной перспективе будут только увеличиваться.

Сера – элемент переодической системы химических элементов Д.И. Менделеева, с атомным номеров 16. Обозначается символом S (от латинского Sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие соли и кислоты.

Сера является шестнадцатым по химической распространённости элементом на Земле. Встречается в свободном (самородном) состоянии, и в виде соединений.

Сера, наряду с нефтью, углем, поваренной солью и известняком относится к пяти основным видам сырья химической промышленности и имеет стратегическое значение для обеспечения населения продовольствием, так как помимо азота, фосфора, калия, кальция и магния является необходимым питательным минеральным элементом для растений, источником плодородия почвы и повышения урожайности.

В целом, мировая серная промышленность может быть разделена на два сектора по формам добычи серы: специализированный и “побочный”. Специализированный сектор ориентируется исключительно на добычу серы или пиритов из месторождений данного сырья. Данный сектор составляет около 10,5% от всего объема общемирового производства серы.

Производство:
Современные способы промышленного производства серы могут быть сведены к трем типам:
– Добыча самородной серы(10, 5%);
– Получение из сероводорода промышленных и природных газов;
– Получение из диоксида серы, выделяющегося в процессметаллургических производств.

Извлечение серы из сероводорода, содержащегося в месторождениях нефти и природного газа, преследует, прежде всего, экологическую цель, поскольку утилизация серы или нейтрализация ее соединений обязательны при получении основной углеводородной продукции. Таким образом, в процессе переработки нефти, природного газа, а также коксохимического производства сера являетсяпобочным продуктом.

Необходимо отметить исключительное разнообразие товарных форм серы. Такой широкий спектр отражает различное происхождение серы (природная, попутная и т.д.), особенности технологии выделения или очистки, области применения. В настоящее время основными считаются комовая, гранулированная и жидкая формы серы.

Комовая Достоинства комовой серы – простота технологии приготовления, состоящей из разлива и затвердевания жидкой серы на бетонированной площадке с последующим взламыванием блоков серы высотой до 3 м, укладкой в штабеля и погрузкой на транспорт. Основной недостаток – потери до 3% при операции экскаваторного рыхления блоков серы
Гранулированная Гранулированной называют серу, состоящую из однородных частиц диаметром от 1 до 5 миллиметров. Наличие частиц меньше указанной величины и пыли серы недопустимо. Гранулированная сера удобна для потребителя и транспортировки, практически не образует пыли при погрузочно – разгрузочных операциях, что улучшает санитарно-гигиенические условия труда и культуру производства.
Чешуированная Чешуйки серы толщиной 0,5-2 мм, образующиеся при срезании застывшей серы с поверхности барабана-кристаллизатора, частично погруженного в жидкую среду и вращающегося с определенной скоростью
Жидкая Растущим спросом пользуется жидкая сера как первичная форма. Особенно это касается крупнотоннажных потребителей и перевозки насравнительно небольшие расстояния (до 800-1000 км), когда затраты энергии на поддержание серы в расплавленном состоянии меньше, чем при ее плавлении на месте использования. Капиталовложения и энергетические затраты, связанные с хранением, транспортировкой, разгрузкой жидкой серы компенсируются высокой чистотой продукта, невозможностью его загрязнения, отсутствием потерь и высокой культурой производства

Применение:
Сера используется повсеместно в химическом производстве. Сера необходима для производства серной кислоты, красителей, сульфитов, в целлюлозно-бумажной, текстильной и других отраслях промышленности.

По разным данным примерно половина использования серы приходится на производство серной кислоты.

Примерно 20-25% серы и технической серы тратится на производство разнообразных сульфитов.

Около 10-15% на нужды сельского хозяйства в качестве сырья для производства пестицидов для защиты растений от вредных насекомых.

Также сера в 10% своего выпуска применяется в процессе вулканизации резины.

Применение серы лежит также в областях исскуственных волокон, люминофоров, пигментов, красителей, при производстве спичек, взрывчатых веществ, лекарственных форм.

В последнее время в странах северной Америки и Европы сера находит такое экзотическое применение как добавка или замена битума, этому способствуют четыре основные причины:
– Первая причина заключается в возможности снижения расхода битума, цена на который в связи с растущими ценами на нефть и энергетическим кризисом значительно увеличилась. А уменьшение содержания битума в серобитумных вяжущих за счет добавок более дешевой и имеющейся в значительных количествах серы позволяет обеспечивать снижение затрат на устройство дорожного покрытия;
– Вторая причина заключается в значительном истощении доступных запасов нерудных материалов, используемых при устройстве слоев дорожного покрытия, которые приходится завозить из других, как правило, отдаленных районов. Применение серобитумных вяжущих материалов позволяет широко использовать в дорожном строительстве местные песчаные грунты, слабые каменные материалы, золы и шлаки, что также обеспечивает существенный экономический эффект.
– Третья причина заключается в значительном улучшении свойств асфальтобетонных смесей на основе серобитумного вяжущего. К их числу относятся более высокая прочность при сжатии, что дает возможность уменьшить толщины соответствующих слоев дорожных покрытий; более высокая теплоустойчивость без значительного увеличения жесткости при низких температурах, что снижает опасность образования в слоях дорожных одежд трещин в холодное (зимнее) время и пластических деформаций в жаркий (летний) период.
– Возможность приготовления смесей на основе серобитумного вяжущего при более низких температурах нагрева компонентов; более высокая устойчивость серобитумных материалов к динамическим нагрузкам; более высокая устойчивость к воздействию бензина, дизельного топлива и других органических растворителей, что позволяет использовать их при устройстве покрытий на стоянках автомобилей, станциях технического обслуживания.
– Выводы сделаны на основании двадцатилетнего опыта применения серы в дорожном строительстве США, Канады и стран Западной Европы.

Мировое производствово серы составляет 80 000 000 тонн/год (первое десятилетия XXI века).

Экология:
Соединения серы по отрицательному воздействию на окружающую среду занимают одно из первых мест среди загрязняющих веществ. Основной источник загрязнения соединениями серы является сжигание угля и нефтепродуктов. 96% серы поступает в атмосферу Земли в виде SO 2 , остальное кол-во приходится на сульфаты, H 2 S, CS 2 , COS и др.

В виде пыли элементная сера раздражает органы дыхания, слизистые оболочки человека, может вызывать экземы и другие нарушения. Предельно допустимая концентрация серы в вохдухе 0,07 мг/м 3 (аэрозоль, класс опасности 4). Многие соединения серы токсичны.

Описание и свойства серы

Сера представляет собой вещество, которое находится в в 16 группе, под третьим периодом и имеет атомный номер – 16. Она может встретиться как в самородном, также и в связанном виде. Обозначается сера литерой S. Известна формула серы – (Ne)3s 2 3p 4 . Сера как элемент входит в состав многих белков.

На фото кристаллы серы

Если говорить о строении атома элемента серы , то на внешней его орбите есть электроны, валентное число которых достигает шести.

Это объясняет свойство элемента быть максимально шестивалентным в большинстве объединений. В структуре природного химического элемента есть четыре изотопа, и это – 32S, 33S, 34S и 36S. Говоря о внешней электронной оболочке, атом имеет схему 3s2 3р4. Радиус атома – 0,104 нанометра.

Свойства серы в первую очередь делятся на физического типа. К нему относится то, что элемент имеет твердый кристаллический состав. Два аллотропических видоизменения – основное состояние, в котором устойчив этот элемент серы.

Первое видоизменение ромбическое, имеющее лимонно-желтую окраску. Его устойчивость ниже, чем 95,6 °С. Второй – моноклинный, имеющий медово-желтую окраску. Его устойчивость колеблется от 95,6 °С и 119,3 °С.

На фото минерал сера

Во время плавки химический элемент стает движущейся жидкостью, имеющей желтый цвет. Она буреет, достигая температуры более 160 °С. А при 190 °С цвет серы превращается в темно-коричневый. После достижения отметки 190 °С наблюдается уменьшение вязкости вещества, которое все же после нагревания 300 °С стает жидкотекучим.

Другие свойства серы:

    Практически не проводит тепла и электричества.

    Не растворяется при погружении в воду.

    Растворима в аммиаке, имеющем безводную структуру.

    Также растворима в сероуглероде и других растворителях, имеющих органическую природу.

К характеристике элемента серы важно добавить и ее химические особенности. Она является активной в этом отношении. Если серу нагреть, то она может просто объединяться практически с любым химическим элементом.

На фото образец серы, добытый в Узбекистане

За исключением инертных газов. При контакте с металлами, хим. элемент образовывает сульфиды. Комнатная температура способствует тому, что элемент может вступить в реакцию с . Увеличенная температура способствует увеличению активности серы.

Рассмотрим, как поведение серы с отдельными веществами:

    С металлами – является окислителем. Образовывает сульфиды.

    С водородом – при высоких температурах – до 200 °С происходит активное взаимодействие.

    С кислородом. Образовывается объединения оксидов при температурах до 280 °С.

    С фосфором, углеродом – является окислителем. Только при отсутствии воздуха во время реакции.

    С фтором – проявляет себя как восстановитель.

    С веществами, имеющими сложную структуру – также как восстановитель.

Месторождения и добыча серы

Основной источник для получения серы – ее месторождения. В целом во всем мире насчитывается 1,4 млрд т запасов этого вещества. Ее добывают как при открытом и подземном способе выработки, так и с помощью выплавки из-под земли.

На фото добыча серы в вулкане Кава Иджен

Если применим последний случай, то используется вода, которую перегревают и расплавляют ею серу. В бедных рудах элемент содержится примерно в 12 %. Богатых – 25% и больше.

Распространенные типы месторождений:

    Стратиформный – до 60%.

    Солянокупольный – до 35 %.

    Вулканогенный – до 5%.

Первый тип связан с толщами, несущими название сульфатно-карбонатных. При этом рудные тела, которые имеют мощность до нескольких десятков метров и с размером до сотни метров находятся в сульфатных породах.

Также эти пластовые залежи можно найти посреди пород сульфатного и карбонатного происхождения. Второй тип характеризуется залежами серого цвета, которые приурочиваются к соляным куполам.

Последний тип связывают с вулканами, имеющими молодую и современную структуру. При этом рудный элемент имеет пластообразную, линзовидную форму. В нем сера может содержаться в размере 40 %. Этот тип месторождения распространен в Тихоокеанском вулканическом поясе.

Месторождение серы в Евразии находится в Туркмении, в Поволжье и других местах. Породы серы находят возле левых берегов Волги, которые тянутся от Самары. Ширина полосы пород достигает нескольких километров. При этом их можно найти вплоть до Казани.

На фото сера в горной породе

В Техасе и Луизиане в кровлях соляных куполов находят огромное количество серы. Особо красивые Италийские этого элемента находят Романьи и Сицилии. А на острове Вулькано находят моноклинную серу. Элемент, который был окислен пиритом, нашли на Урале в Челябинской области.

Для добычи серы хим элемента используют разные способы. Все зависит от условия его залегания. При этом, конечно же, особое внимание уделяют безопасности.

Так как вместе с серной рудой скопляется сероводород, то необходимо особо серьезно подходить к любому способу добычи, ведь этот газ ядовитый для человека. Также и сера имеет свойство возгораться.

Чаще всего пользуются открытым способом. Так с помощью экскаваторов снимаются значительные части пород. Затем с помощью взрывов дробится рудная часть. Глыбы отправляются на фабрику для обогащения. Затем – на завод по плавке серы, где и получают серу из концентрата.

На фото сера в порту, привезенная морским транспортом

В случае глубокого залегания серы во многих объемах, используют метод Фраша. Сера расплавляется, находясь еще под землей. Затем, как и нефть выкачивается наружу через пробитую скважину. Такой подход основывается на том, что элемент легко плавится и имеет небольшую плотность.

Также известен способ разделения на центрифугах. Только этот способ имеет недостаток: сера получается с примесями. И тогда необходимо проводить ее дополнительную очистку.

В некоторых случаях используют скважный метод. Другие возможности добычи серного элемента:

    Пароводяной.

    Фильтрационный.

    Термический.

    Центрифугальный.

    Экстракционный.

Применение серы

Большая часть добытой серы уходит, чтоб изготовить серную кислоту. А роль этого вещества очень огромная в химическом производстве. Примечательно, что для получения 1 тонны серного вещества необходимо 300 кг серы.

Бенгальские огни, которые ярко светятся и имеют много красителей, также производятся с помощью серы. Бумажная промышленность – это еще одна область, куда уходит значительная часть добытого вещества.

На фото серная мазь

Чаще всего применение сера находит при удовлетворении производственных нужд. Вот некоторые из них:

    Использование в химическом производстве.

    Для изготовления сульфитов, сульфатов.

    Изготовление веществ для удобрения растений.

    Чтоб получить цветные виды металлов.

    Для придачи стали дополнительных свойств.

    Для изготовления спичек, материалов для взрывов и пиротехники.

    Краски, волокна из искусственных материалов – изготовляются при помощи этого элемента.

    Для отбеливания ткани.

В некоторых случаях элемент сера входит в мази, которые лечат кожные болезни.

Цена серы

По последним новостям необходимость в сере активно растет. Стоимость на российский продукт равняется 130 долларам. На канадский вариант – 145 долларов. А вот в Ближнем Востоке цены возросли до 8 долларов, что привело к стоимости в 149 долларов.

На фото крупный экземпляр минерала сера

В аптеках можно найти молоту в порошок серу по цене от 10 до 30 рублей. К тому же есть возможность купить ее оптом. Некоторые организации предлагают по невысокой цене приобрести гранулированную техническую газовую серу .

Серы (S) — химический элемент группы 16 периодической системы элементов с атомным номером 16, простое вещество которого сера — неметалл, желтая кристаллическое вещество. Встречается в природе в самородном состоянии и в виде сульфидов тяжелых металлов (пирита и других). Серу применяют преимущественно в химической промышленности для производства серной кислоты, синтетического волокна, сернистых красителей, дымного пороха, в резиновой промышленности, а также в сельском хозяйстве, фармацевтике и др.

Благодаря способности создавать дисульфидные связи Сера играет важную роль в составе белков.

История

Элементарную природу серы установил Антуан Лавуазье в своих опытах по сжиганию.

Общая характеристика

Серы имеет атомную массу 32,06. В природе существует 4 стабильных изотопа с массовыми числами 32-34 и 36. Сера принадлежит к халькогенов, по новой классификации в шестнадцатом, а по старой к VI группы элементов периодической таблицы. Сера является неметаллов.

Известны несколько аллотропных форм серы. При обычных условиях стабильной является ромбическая сера — бледно-желтого цвета, с плотностью 2070 кг / м3, t плав = 112,8 ° С, t кип = 444,6 о С. Во всех жидких и твердых состояниях сера диамагнитна. Термодинамические и другие свойства серы резко меняются при 160 ° C, что связано с изменением молекулярного строения жидкой серы. Вязкость серы с повышением температуры сильно возрастает (от 0,0065 Пас при 155 ° C до 93,3 Пас при 187 ° C), а затем падает (до 0,083 Пас при 444,6 ° C).

Сера реагирует почти со всеми металлами.

Распространение в природе

Серы — достаточно распространенный элемент, на него приходится около 0,1% массы земной коры. Среднее содержание серы в земной коре 4,710 -2 мас.%, При этом основное количество природной серы сосредоточена в осадочных горных породах (0,3 мас.%). В других горных породах среднее содержание серы таков: дуниты, перидотиты, пироксениты — 0,01%; базальты, габронориты, диабаза — 0,03%; диориты, андезиты — 0,02%.

В природе сера встречается как в свободном состоянии — так называемая самородная сера, но значительно чаще она встречается в связанном виде, то есть в виде различных соединений. Важнейшие из них — железный колчедан, или пирит FeS 2, цинковая обманка ZnS, свинцовый блеск PbS, медный блеск Cu 2 S, гипс CaSO 4 · 2H 2 O, мирабилит Na 2 SO 4 · 10H 2 O и др.

Сера содержится в каменном угле и нефти, а также во всех растительных и животных организмах, поскольку она входит в состав белков.

Содержание серы в нефти и природном газе оценивается в 210 9 т, то есть больше, чем запасы природной серы. Сера в нефти присутствует в разной форме, от элементной серы и сероводорода в сернистой органики, который включает более 120 соединений. Основные серосодержащие вещества углеводородного сырья — сероводород, меркаптаны и другие сероорганические соединения. Сырьевой базой для получения серы является, как правило, газы с содержанием сероводорода не менее 0,1%.

Конечно самородная сера встречается сплошной массой, заполняя трещины и полости в горных породах, или в виде натечных, шаровидных и гниздоподибних агрегаты, сталактитов, сталагмитов, налетов, выцветов, землистых порошковатые скоплений. Нередко она образует кристаллы, которые часто группируются в сростки, друзы, щетки.

Физические свойства

Сера — кристаллическое вещество желтого цвета. Она очень хрупкая и легко растирается в мельчайших порошок. Плотность 2070 кг / м 3. t плав = 112,8 ° С, t кип = 444,6 о С. Во всех жидких и твердых состояниях сера диамагнитна.

Встречается в трех аллотропных формах: две кристаллические (ромбическая и моноклинная, по способу соединения атомов в кристалле) и аморфная.

  • α-S (ромбическая) кристаллическая модификация, t плав = 112,8 ° C, устойчива к 95,6 ° C, лимонно-желтая;
  • β-S кристаллическая модификация, t плав = 119 ° C, устойчива при 95,6-119 ° C, медово-желтая. До 160 ° C молекулы 8-атомные, в парах — 2-атомные (парамагнитная сера), 4, 6, и 8-атомные.
  • Выше 160 ° C образуются спиральные цепи μ-S пластической серы.

Электрического тока и тепла сера почти не проводит. Пары серы при очень быстром охлаждении переходят в твердое состояние в виде очень тонкого порошка (серного цвета), минуя жидкое состояние. В воде сера нерастворим и не смачивается водой, но в бензоле C 6 H 6 и особенно в сероуглероде CS 2 растворяется хорошо.

Химические свойства

Имея во внешнем слое шесть электронов: (+ 16), 2,8,6 — атомы серы проявляют свойства окислителя и, присоединяя от атомов других элементов два электрона, которых им не хватает в полностью заполненной внешней оболочки, превращаются в отрицательно двухвалентные ионы: S 0 + 2е = S 2. Но Сера — менее активный окислитель, чем кислород, поскольку его валентные электроны отдаленные от ядра атома и слабее с ним связаны, чем валентные электроны атомов кислорода. В отличие от кислорода Сера может проявлять свойства и восстановителя: S 0 — 6e = S 6+ или S 0 — 4e = S 4+. Восстановительные свойства серы проявляются при взаимодействии с сильнее него окислителем, то есть с веществами, атомы которых имеют большее сродство к электрону.

Серы может непосредственно реагировать почти со всеми металлами (за исключением благородных), но преимущественно при нагревании. Так, если смесь порошков серы и железа нагреть хоть в одном месте, чтобы началась реакция, то дальше вся смесь сама собой раскалится (за счет теплоты реакции) и превратится в черную хрупкую вещество — моносульфид железа:

Fe + S = FeS

Смесь порошков серы и цинка при поджога реагирует очень бурно, со вспышкой. Вследствие реакции образуется сульфид цинка:

Zn + S = ZnS

С ртутью сера реагирует даже при обычной температуре. Так, при растирании ртути с порошком серы возникает черное вещество — сульфид ртути:

Hg + S = HgS

При высокой температуре сера реагирует также с водородом с образованием сероводорода:

H 2 + S = H 2 S.

При взаимодействии с металлами и водородом сера играет роль окислителя, а сама восстанавливается до ионов S 2- Поэтому во всех сульфидах сера негативно двухвалентное. Сера сравнительно легко реагирует и с кислородом. Так, подожжена сера горит на воздухе с образованием диоксида серы SO 2 (сульфитного ангидрида) и в очень незначительном количестве триоксида серы SO 3 (сульфатного ангидрида).

  • S + O 2 = SO 2
  • 2S + 3O 2 = 2SO 3

При этом окислителем является кислород, а серу — восстановителем. В первой реакции атом серы теряет четыре, а во второй — шесть валентных электронов, в результате чего Сера в составе SO 2 положительно четырёхвалентен, а в SO 3 — положительно шестивалентный.

Получение

Серу получают из самородных руд, а также в виде побочного продукта при переработке полиметаллических руд, из сульфатов при их комплексной переработке, из природных газов и горючих ископаемых при их очистке. Доля серы получена из сероводорода возрастает. Для отделения серы от посторонних примесей ее выплавляют в автоклавах. Автоклавы — это железные цилиндры, в которые загружают руду и нагревают перегретым водяным паром до 150 ° С под давлением 6 атм.. Расплавленное сера стекает вниз, а пустая порода остается. Выплавленная из руды сера еще содержит определенное количество примесей.

Вполне чистую серу получают перегонкой в ​​специальных печах, соединенных с большими камерами. Пары серы в холодной камере сразу переходят в твердое состояние и оседают на стенках в виде очень тонкого порошка светло-желтого цвета. Когда же камера нагревается до 120 ° С, то пары серы превращаются в жидкость. Расплавленную серу разливают в деревянные цилиндрические формы, где она и застывает. Такую серу называют Черенкова.

Применение

Сера широко применяется в различных отраслях народного хозяйства, в основном в химической промышленности для производства серной кислоты H 2 SO 4 (почти половина серы, добываемой в мире), сероуглерода CS 2, некоторых красителей, и других химических продуктов. Значительные количества серы потребляет резиновая промышленность для вулканизации каучука, то есть для преобразования каучука в резину.

Серу используют в химической промышленности при производстве фосфорной, соляной и других кислот, в резиновой промышленности, производстве красителей, дымного пороха и тому подобное. Самородную серу используют в сельском хозяйстве (инсектициды, микроудобрения, как дезинфицирующее средство в животноводстве).

Техническая сера, применяется для производства серной кислоты, должна содержать не менее 95% серы, мышьяка и Селена не должно быть совсем, а содержание органических веществ не должно превышать 1%. Производство искусственного волокна (вискозы) в химической промышленности является другим потребителем серы. В сельском хозяйстве серу применяют как средство борьбы с вредителями, частично в качестве удобрения, для дезинфекции при лечении животных. В бумажном производстве серу в виде SО2 используют при обработке древесной массы (бисульфатний метод). Сера используется при вулканизации резины, в стеклянной, кожевенной промышленности. Незначительные количества серы высокой чистоты используются в химико-фармацевтической промышленности. Серу используют также для производства ультрамарина. Текстильная, пищевая, крахмальная и паточная отрасли промышленности применяют серу или ее соединения для отбеливания и осветления, при консервировании фруктов, в холодильном деле.

Серу используют также в спичечном производстве, в пиротехнике, в производстве черного пороха и тому подобное. В медицине сера идет для изготовления серной мази при лечении кожных болезней. В сельском хозяйстве сернистый цвет применяют для борьбы с вредителями хлопчатника и виноградной лозы.

Воздействие на человека

Серный пыль раздражает органы дыхания, слизистые оболочки. ПДК — 2 мг / м. куб.

Извлекаемая из природного газа смесь кислых газов наполовину и более по объему состоит из сероводорода. Остальная часть включает углекислый газ и небольшие количества серооксида углерода и углеводороды (метан, этан). Эта смесь кислых газов утилизируется обычно на месте очистки природного газа с целью получения из нее элементной серы.

Химия и технология процесса Клауса

После извлечения сероводорода его перерабатывают мето­дом Клауса в элементную серу. Процесс Клауса, названный по имени английского химика Карла Клауса, запатентовавшего в 1883 году способ получения серы из сероводорода, является основным процессом получения серы из сероводорода и основан на окислении сероводорода до серы.

В модифицированном вариан­те окисление проводят в две стадии-термическую и каталити­ческую. На термической стадии ведут пламенное окисление сероводорода воздухом со стехиометрическим количеством кислорода при 900-1350°С. При этом часть сероводорода окисляется до диоксида серы:

На каталитической стадии идет реакция между сероводоро­дом и диоксидом серы в присутствии катализатора - боксита или активного триоксида алюминия при 220-250 °С.

Одновременно с таким двухстадийным образованием серы протекает реакция прямого окисления:

Поскольку в составе кислых газов кроме сероводорода при­сутствуют другие компоненты, в процессе горения протекают также следующие побочные реакции:

Технология получения серы методом Клауса реализует ука­занные выше реакции обычно в три ступени.

Технологическое оформление процесса зависит при этом от состава кислого газа - содержания в нем сероводорода и углево­дородов.

Содержание углеводородов в кислом газе обычно невелико [до 5%(об.)] и их наличие значительно увеличивает расход воз­духа для горения, объем газов после горения и соответственно размеры оборудования. В зоне высоких температур при горении углеводородов образуется углерод, который снижает качество серы и ухудшает ее цвет. За счет реакций с сероводородом угле­род образует CS 2 и COS, которые не подвергаются в дальней­шем конверсии и, попадая в уходящий после процесса Клауса газ, уменьшают выход серы.

Принципиальная схема производства серы методом Клауса (Мубарекский ГПЗ) приведена на рис. 25.

По этой схеме почти весь кислый газ (95 - 98%) подается на первую терми­ческую ступень конверсии, представляющую собой паровой котел газотрубного типа. В зоне горения 1 (топке) этого котла поддерживается температура около 1100 о С, которая снижается до 350 о С после прохождения газами зоны трубного пучка, в котором генерируется водяной пар высокого давления (2,0 - 2,5 МПа). Затем газ охлаж­дается в конденсаторе 3 до 185°С и поступает на вторую ступень. Из низко­температурных зон термического реактора и охладителя 3 через серозатворы из системы выводится жидкая сера. Максимальный выход серы на первой ступени составляет 60 - 70% от общего ее выхода.

Рис.25. Принципиальная схема получения серы методом Клауса:

1, 4, 7 - печи для сжигания газа; 2 - термический реактор с узлом генерации водяного пара; 3, 6, 9 - охладители (конденсаторы); 5, 8 - реакторы второй и третьей ступени; 10 - уловитель серы; 11 - печь дожига; 12 - блок доочистки газа (процесс "СКОТ"); 13 - прием­ная емкость серы; I - кислый газ; II - воздух; III - топливный газ; IV- вода; V- водяной пар;VI- сера; VII и VIII - отходящий и очищенный дымовой газ.

Вторая ступень состоит из печи 4 для сжигания оставшейся части кислого газа и превращения оксида серы, содержащегося в газе после первой ступени. Реакции на этой ступени протекают при температуре 240 - 250°С в реакторе 5, заполненном катализатором (активированный оксид алюминия). В последнее время стали широко применяться катализаторы на основе диоксида титана (содержание ТiO 2 > 85%) фирмы "PRO-Catalist" (марки CRS-31, CRS-32). На выходе из реактора 5 температура достигает 330 о С. Газ затем охлаждается в охладителе до 170°С с выделением из него сконденсированной серы. Газ из охладителя 6 поступает на третью ступень, вначале в печь 7, где его температура повышается до 220 о С (за счет горения топливного газа III ), затем газ проходит реактор 8, в котором температура газа повышается на 20 - 30 о С (до 250°С). После этого газ снова охлаждается в охладителе 9, из которого сконденсированная сера отводится через серозатвор, а уходящий газ через сепаратор 10 направляется на дожиг в печь 11. В этой печи при 500 - 550 о С дожигаются остатки непрореагировавшего сероводорода, после чего хвостовой газ VII выбрасывается через выхлопную трубу. С целью снижения загрязнения атмосферы на многих установках Клауса используют блок очистки хвостового газа СКОТ 12 - абсорбционным поглощением SО 2 раствором сульфолана и диизопропаноламина.

Степень конверсии сероводорода в процессе Клауса является очень важным параметром, поскольку определяет выход серы и содержание вредных примесей в хвостовом газе.

Наиболее высокая конверсия (до 99,8%) достигается при температурах 110-120 о С. При этом содержание серы в газе на выходе из реактора составляет около 0,05-0,15 г/м 3 , основная часть этой серы находится в твердом виде.


© 2024
reaestate.ru - Недвижимость - юридический справочник