21.06.2020

Влияние условий внешней среды на микроорганизмы. Распространение микроорганизмов в природе. Распространение микроорганизмов в окружающей среде Микробы в окружающей среде презентация


0

Скачать:

ДОКЛАД

По дисциплине «Экология микроорганизмов»

«Метод микроскопических наблюдений. Особенности микроскопии микроорганизмов. Некультивируемые формы бактерий. Люминисцентно-микроскопические методы. Использование различных красителей. Иммунофлуоресцентные методы»

1. Введение

2. Метод микроскопических наблюдений

3. Особенности микроскопии микроорганизмов

4. Некультивируемые формы бактерий

5. Люминисцентно-микроскопические методы. Иммунофлуоресцентные методы

6. Использование различных красителей

Введение

Экология микроорганизмов - это раздел общей экологии, изучающий место обитания микробов и их экологические связи. Основным положением является концепция о доминировании микробов в создании биосферы Земли и последующем поддержании ее экологического баланса. Указанная концепция базируется на представлении о микробах как о единственных живых обитателях Земли в период между 4×10 9 −0,5×10 9 лет назад, на повсеместном распространении микробов в биосфере, преобладании биомассы микробов над совокупной биомассой растений и животных, способности микробов трансформировать любые органические и неорганические вещества и включать химические элементы и энергию во все новые и новые циклы круговорота веществ и энергии, а также самостоятельно накапливать новую биомассу и осуществлять хотя и резко ограниченный, но полный цикл круговорота азота, углерода и некоторых др. элементов, поддерживать радиационный (тепловой) баланс Земли. Такая важная роль микробов обеспечивается массовостью популяций, высокими темпами их роста и размножения, способностью переходить и длительное время находиться в состоянии покоя, относительно высокой устойчивостью к повреждающим факторам внешней среды, чрезвычайным разнообразием в физиологических потребностях, небольшими размерами и массой, определяющими возможность их широкой миграции с воздушными, водными и биогенными потоками. Прикладная экология микроорганизмов решает задачи:

1)Защиты микробных популяций и биоценозов, принимающих участие в поддержании экологического баланса (азотфиксирующих, аммонифицирующих, нитрифицирующих и др.), от неблагоприятного воздействия хозяйственной деятельности человека;

2) Предупреждения микробной деградации живой и неживой природы и различных антропогенных материалов (например, профилактика болезней людей, животных, растений, сохранение продовольственных товаров, промышленных материалов и др.);

3) Микробного синтеза необходимых человеческому обществу материалов и веществ (напр., синтез микробного белка);

4) Защиты биосферы Земли от искусственных мутантов и заноса жизни из космоса и выноса жизни с Земли в космос;

5) Важный раздел экологии микроорганизмов - исследование экологических связей.

Метод микроскопических наблюдений

Микроскопические наблюдения - способы изучения очень мелких, неразличимых невооруженным глазом объектов с помощью микроскопов. Широко применяются в бактериологических, гистологических, цитологических, гематологических и других исследованиях.

Обычная световая микроскопия предназначена для изучения окрашенных препаратов на предметных стеклах. С помощью световой микроскопии можно исследовать подвижность микроорганизмов. Для этого применяют метод висячей капли. Небольшую каплю микробной взвеси наносят на середину покровного стекла. Предметное стекло с углублением («лункой»), края которого смазаны вазелином, осторожно накладывают на покровное стекло так, чтобы капля исследуемой жидкости оказалась в центре углубления, плотно прижимают к стеклу и быстро переворачивают кверху. Для исследования препарата используют иммерсионный объектив, который погружают в иммерсионное масло на покровном стекле.

Помимо световой существуют фазово-контрастная, темнопольная (ультрамикроскопия), люминесцентная, поляризационная, ультрафиолетовая и электронная микроскопия.

Фазово-контрастная микроскопия основана на интерференции света: прозрачные объекты, отличающиеся по показателю преломления от окружающей среды, выглядят либо как темные на светлом фоне (позитивный контраст), либо как светлые на темном фоне (негативный контраст). Фазово-контрастная микроскопия применяется для изучения живых микроорганизмов и клеток в культуре ткани.

Темнопольная микроскопия (ультрамикроскопия) основана на рассеянии света микроскопическими объектами (в т. ч. теми, размеры которых меньше предела разрешения светового микроскопа). При темнопольной микроскопии в объектив попадают только лучи света, рассеянного объектами при боковом освещении (аналогично эффекту Тиндаля, примером которого является обнаружение пылинок в воздухе при освещении узким лучом солнечного света). Прямые лучи от осветителя в объектив не попадают. Объекты при темнопольной микроскопии выглядят ярко светящимися на темном фоне. Применяется темнопольная микроскопия преимущественно для изучения спирохет и обнаружения (но не изучения морфологии) крупных вирусов.

В основе люминесцентной микроскопии лежит явление люминесценции, т. е. способности некоторых веществ светиться при облучении их коротковолновой (сине-фиолетовой) частью видимого света либо ультрафиолетовыми лучами с длиной волны, близкой к видимому свету. Люминесцентная микроскопия используется в диагностических целях для наблюдения живых или фиксированных микроорганизмов, окрашенных люминесцирующими красителями (флюорохромами) в очень больших разведениях, а также при выявлении различных антигенов и антител с помощью иммунофлюоресцентного метода.

Поляризационная микроскопия основана на явлении поляризации света и предназначена для выявления объектов, вращающих плоскость поляризации. Применяется в основном для изучения митоза.

В основе ультрафиолетовой микроскопии лежит способность некоторых веществ (ДНК, РНК) поглощать ультрафиолетовые лучи. Она дает возможность наблюдать и количественно устанавливать распределение этих веществ в клетке без специальных методов окраски. В ультрафиолетовых микроскопах используется кварцевая оптика, пропускающая ультрафиолетовые лучи.

Электронная микроскопия принципиально отличается от световой как устройством электронного микроскопа, так и его возможностями. В электронном микроскопе вместо световых лучей для построения изображения используется поток электронов в глубоком вакууме. В качестве линз, фокусирующих электроны, служит магнитное поле, создаваемое электромагнитными катушками. Изображение в электронном микроскопе наблюдают на флюоресцирующем экране и фотографируют. В качестве объектов используют ультратонкие срезы микроорганизмов или тканей толщиной 20- 50 нм, что значительно меньше толщины вирусных частиц. Высокая разрешающая способность современных электронных микроскопов позволяет получить полезное увеличение в миллионы раз. С помощью электронного микроскопа изучают ультратонкое строение микроорганизмов и тканей, а также проводят иммунную электронную микроскопию.

Особенности микроскопии микроорганизмов

Особенность микроскопирования микробов - применение исключительно иммерсионной системы, состоящей из исследуемого объекта, иммерсионных масла и объектива. Преимущество этой системы заключается в том, что между объектом на предметном стекле и фронтальной линзой объектива находится среда с одинаковым показателем преломления (кедровое, вазелиновое масло и др.). Благодаря этому достигается наилучшее освещение объекта, так как лучи не преломляются и попадают в объектив. При обычной световой микроскопии наблюдаемый объект (в том числе и микробы) рассматриваются в проходящем свете. Поскольку микробы, как и другие биологические объекты, малоконтрастны, то для лучшей видимости их окрашивают. С целью расширения границы видимости применяют другие виды световой микроскопии. Темнопольная микроскопия - метод микроскопического исследования объектов, не поглощающих свет, плохо видимых при методе светлого поля. При темнопольной микроскопии объекты освещаются косыми лучами или боковым пучком света, что достигается при помощи специального конденсора - так называемого конденсора темного поля. При этом в объектив микроскопа попадают только лучи, рассеянные объектами, находящимися в поле зрения. Поэтому наблюдатель видит эти объекты ярко светящимися на темном фоне. Темнопольную микроскопию применяют для прижизненного изучения трепонем, лептоспир, боррелий, жгутикового аппарата бактерий. Фазово-контрастная микроскопия - метод микроскопического наблюдения прозрачных, неокрашенных, не поглощающих света объектов, основанный на усилении контраста изображения. Прозрачные неокрашенные объекты (в том числе живые микроорганизмы) отличаются от окружающей среды по показателю преломления, не поглощают свет, но изменяют его фазу. Эти изменения не улавливаются глазом. При фазово-контрастной микроскопии свет, не поглощенный объектом, проходит через так называемое фазовое кольцо, нанесенное на одну из линз объектива. Фазовое кольцо смещает фазу этого проходящего света на четверть длины волны и снижает его интенсивность. Прохождение прямого, не поглощенного объектом света через фазовое кольцо обеспечивается кольцевой диафрагмой конденсора. Лучи, даже немного отклоненные (рассеянные) в препарате, не попадают в фазовое кольцо и не претерпевают сдвига фазы. В результате разность фаз между отклоненными и неотклоненными лучами усиливается, давая контрастное изображение структуры препарата. Фазово-контрастную микроскопию используют для прижизненного изучения бактерий, грибов, простейших, клеток растений и животных.

Некультивируемые формы бактерий

У многих видов грамотрицательных бактерий, в том числе у патогенных (шигеллы, сальмонеллы, холерный вибрион и др.) существует особое приспособительное, генетически регулируемое состояние, физиологически эквивалентное цистам, в которое они могут переходить под влиянием неблагоприятных условий и сохранять жизнеспособность до нескольких лет. Симбиоз нескольких видов бактерий, используемых в медикаментах, хорошо помогает при лечении ВСД (вегетососудистой дистонии) и других заболеваний.

Главная особенность этого состояния заключается в том, что такие бактерии не размножаются и поэтому не образуют колоний на плотной питательной среде. Такие не размножающиеся, но жизнеспособные клетки получили название некультивируемых форм бактерий (НФБ). Клетки НФБ, находящиеся в некультивируемом состоянии (НС), обладают активными метаболическими системами, в том числе системами переноса электронов, биосинтеза белка и нуклеиновых кислот, и сохраняют вирулентность. Их клеточная мембрана более вязкая, клетки обычно приобретают форму кокков, имеют значительно уменьшенные размеры. НФБ обладают более высокой устойчивостью во внешней среде и поэтому могут переживать в ней длительное время (например, холерный вибрион в грязном водоеме), поддерживая эндемическое состояние данного региона (водоема).

Для обнаружения НФБ используют молекулярно-генетические методы (ДНК-ДНК-гибридизация, ЦПР), а также более простой метод прямого подсчета жизнеспособных клеток. С этой целью к исследуемому материалу добавляют в небольшом количестве питательные вещества (дрожжевой экстракт) и налидиксовую кислоту (для подавления синтеза ДНК) на несколько часов.

Клетки усваивают питательные вещества и увеличиваются в размерах, но не делятся, поэтому такие увеличенные клетки четко видны в микроскоп и их легко подсчитать. Для этих целей можно использовать также методы цитохимические (образование формазана) или микроауторадиографии. Генетические механизмы, обусловливающие переход бак­терий в НС и их реверсию из него, не ясны.

Люминисцентно-микроскопические методы.

Иммунофлуоресцентные методы.

Люминесцентная микроскопия основана на свойстве некоторых веществ давать свечение - люминесценцию в УФ-лучах или в сине-фиолетовой части спектра. Многие биологические вещества, такие как простые белки, коферменты, некоторые витамины и лекарственные средства, обладают собственной (первичной) люминесценцией. Другие вещества начинают светиться только при добавлении к ним специальных красителей - флюорохромов (вторичная люминесценция). Флюорохромы могут распределяться в клетке диффузно либо избирательно окрашивают отдельные клеточные структуры или определенные химические соединения биологического объекта. На этом основано использование люминесцентной микроскопии при цитологических и гистохимических исследованиях. С помощью иммуно-флюоресценции в люминесцентном микроскопе выявляют вирусные антигены и их концентрацию в клетках, идентифицируют вирусы, определяют антигены и антитела, гормоны, различные продукты метаболизма и т. д. В связи с этим люминесцентную микроскопию применяют в лабораторной диагностике таких инфекций, как герпес, эпидемический паротит, вирусный гепатит, грипп и др., используют в экспресс-диагностике респираторных вирусных инфекций, исследуя отпечатки со слизистой оболочки носа больных, и при дифференциальной диагностике различных инфекций. В патоморфологии с помощью люминесцентной микроскопии распознают злокачественные опухоли в гистологических и цитологических препаратах, определяют участки ишемии мышцы сердца при ранних сроках инфаркта миокарда, выявляют амилоид в биоптатах тканей и т. д.

В лабораторной практике применяют также иммунофлуоресцентный метод Кунса, когда с помощью флуоресцирующего красителя, присоединенного к молекуле антитела, реакция антиген - антитело становится видимой в люминесцентный микроскоп.

В отличие от других серологических реакций, когда о соединении антигена с антителом судят по вызываемому им вторичному эффекту (агглютинации, преципитации и др.), иммунофлуоресцентный метод позволяет непосредственно наблюдать происходящую реакцию и, следовательно, судить о наличии и локализации антигена.

В настоящее время большое распространение приобретает иммуноферментный метод, обладающий высокой чувствительностью и универсальностью. Этот метод основан на определении антигенов при помощи иммуносорбента, связанного с ферментом. Такая реакция между антигеном и антителом получила название ELISA (enzyme-linked immunosorbent assay).

Например, если надо обнаружить антиген в клетке при наличии соответствующего гомологичного антитела, можно соединить фермент ковалентно с антителом и затем этим антителом, меченным ферментом, прореагировать с антигеном.
Самый чувствительный, позволяющий обнаружить малое содержание антигенов (0,5 нг/мл),- радиоиммунный метод, однако он требует специального оборудования.

Перечисленные методы имеют ряд преимуществ перед бактериологическим. Это методы экспресс-диагностики, позволяющие определить антигены возбудителей в течение нескольких минут или часов.

Использование различных красителей

Окраска микроорганизмов - наиболее распространенный в микробиологии комплекс методов и приемов, применяемый для обнаружения и идентификации микроорганизмов с помощью микроскопа. В нативном (естественном) состоянии бактерии имеют такой же коэффициент преломления, как и стекло, поэтому они невидимы при микроскопическом исследовании. Окраска микроорганизмов позволяет изучить морфологические особенности микробов, а иногда точно определить их вид, например некоторые микробы - одинаковые по морфологии - различно окрашиваются с помощью одних и тех же сложных методов окраски.

Окраска микроорганизмов представляет собой физико-химический процесс соединения химических компонентов клетки с краской. В ряде случаев различные части микробной клетки (ядро, цитоплазма) избирательно окрашиваются различными красителями. Наиболее пригодными для окраски микроорганизмов являются анилиновые краски, главным образом основные и нейтральные, кислые краски менее пригодны.

Приготовление окрашенного препарата включает ряд этапов:

1) приготовление мазка;

2) высушивание мазка;

3) фиксацию мазка;

4) окраску;

5) высушивание.

Мазок готовят на чистых предметных стеклах, на середину которых наносят небольшую каплю воды и в нее с помощью бактериологической петли помещают исследуемый материал. Материал распределяют на стекле равномерным тонким слоем, размер мазка -1-2 см 2 .
Препарат обычно высушивают при комнатной температуре на воздухе. Для ускорения высушивания допускается подогревание мазка в струе теплого воздуха высоко над пламенем горелки.

Высушенный мазок подвергается фиксации, при которой мазок прикрепляется к стеклу (фиксируется), а микробы становятся более восприимчивыми к окраске. Способов фиксации много. Наиболее простой и распространенный - фиксация жаром - нагревание на пламени горелки (препарат проводят несколько раз через наиболее горячую часть пламени горелки). В ряде случаев прибегают к фиксации жидкостями (этиловый или метиловый спирт, ацетон, смесь равных объемов спирта и эфира - по Никифорову). После фиксации мазок окрашивают. Количество краски, наносимое на препарат, должно быть таким, чтобы покрыть всю поверхность мазка. По истечении срока окрашивания (2–5 мин.) краску сливают и препарат промывают водой.

Существуют простые, сложные и дифференциальные способы окрашивания микробов. При простой окраске обычно употребляют одну краску, чаще всего красную - фуксин, или синюю - метиленовый синий. Фуксин красит быстрее (1–2 мин.), метиленовый синий - медленнее (3–5 мин.). Фуксин приготовляют в виде концентрированного карболового раствора (фуксин Циля), очень стойкого и пригодного для окраски в течение многих месяцев. Метиленовый синий приготовляется заранее в насыщенном спиртовом растворе, который стоек и может долго храниться.
Сложные способы окраски, при которых применяются два или более красителя, являются ценными методами, используемыми в микробиологической диагностике инфекционных болезней.

Наибольшее практическое значение имеет окраска по Граму и окраска по Цилю.
Метод окраски по Цилю является основным для окраски кислотоустойчивых бактерий. Здесь применяются два красителя: карболовый фуксин Циля и метиленовый синий. Кислотоустойчивые бактерии окрашиваются в красный цвет, все некислотоустойчивые формы - в синий.

Метод Грама - метод окраски микроорганизмов для исследования, позволяющий дифференцировать бактерии по биохимическим свойствам их клеточной стенки. Окраска по Граму имеет большое значение в систематике бактерий, а также для микробиологической диагностики инфекционных заболеваний.

Грамположительны кокковые (кроме представителей рода Neisseria) и спороносные формы бактерий, а также дрожжей, они окрашиваются в иссиня-чёрный (тёмно-синий) цвет.

Грамотрицательны многие неспороносные бактерии, они окрашиваются в красный цвет, ядра клеток приобретают ярко-красный цвет, цитоплазма - розовый или малиновый.

Окраска по Граму относится к сложному способу окраски, когда на мазок воздействуют двумя красителями, из которых один является основны́м, а другой - дополнительным. Кроме красящих веществ при сложных способах окраски применяют обесцвечивающие вещества: спирт, кислоты и др.

Для окраски по Граму чаще используют анилиновые красители трифенилметановой группы: генциановый, метиловый фиолетовый или кристаллвиолет. Грамположительные Грам (+) микроорганизмы дают прочное соединение с указанными красителями и йодом. При этом они не обесцвечиваются при воздействии на них спиртом, вследствие чего при дополнительной окраске фуксином Грам (+) микроорганизмы не изменяют первоначально принятый фиолетовый цвет.

Грамотрицательные Грам (−) микроорганизмы образуют с основными красителями и йодом легко разрушающееся под действием спирта соединение. В результате микробы обесцвечиваются, а затем окрашиваются фуксином, приобретая красный цвет.

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.

Презентация на тему: «Бактерии и микроорганизмы» Крушельницкой Аллы Группа О - 31 Содержание Бактерии. Вид Классификация микроорганизмов Принципы подразделения бактерий на группы. Структура бактериальной клетки. В основном бактерии относятся к прокариотам. Это самые простые, наиболее мелкие и широко распространенные организмы. Вместе с тем имеющие способность постоянно развиваться. Бактерии настолько отличаются от других живых организмов, что их выделяют в особое царство. Вид В современном представлении вид в микробиологии - совокупность микроорганизмов, имеющих общее эволюционное происхождение, близкий генотип и максимально близкие фенотипические характеристики. При изучении, идентификации и классификации микроорганизмов чаще всего изучают следующие (гено- и фенотипические) характеристики: 1. Морфологические- форма, величина, особенности взаиморасположения, структура. 2. Тинкториальные- отношение к различным красителям (характер окрашивания), прежде всего к окраске по Граму. По этому признаку все микроорганизмы делят на грамположительные и грамотрицательные. 3.Культуральные- характер роста микроорганизма на питательных средах. 4.Биохимические- способность ферментировать различные субстраты (углеводы, белки и аминокислоты и др.), образовывать в процессе жизнедеятельности различные биохимические продукты за счет активности различных ферментных систем и особенностей обмена веществ. 5.Антигенные- зависят преимущественно от химического состава и строения клеточной стенки, наличия жгутиков, капсулы, распознаются по способности макроорганизма (хозяина) вырабатывать антитела и другие формы иммунного ответа, выявляются в иммунологических реакциях. 6.Физиологические- способы углеводного (аутотрофы, гетеротрофы), азотного (аминоавтотрофы, аминогетеротрофы) и других видов питания, тип дыхания (аэробы, микроаэрофилы, факультативные анаэробы, строгие анаэробы). 7.Подвижность и типы движения. 8.Способность к спорообразованию, характер спор. 9.Чувствительность к бактериофагам, фаготипирование. 10.Химический состав клеточных стенок- основные сахара и аминокислоты, липидный и жирнокислотный состав. 11.Белковый спектр (полипептидный профиль). 12.Чувствительность к антибиотикам и другим лекарственным препаратам. 13.Генотипические (использование методов геносистематики). В микробиологии часто используется ряд других терминов для характеристики микроорганизмов. Штамм- любой конкретный образец (изолят) данного вида. Штаммы одного вида, различающиеся по антигенным характеристикам, называют серотипами (серовариантамисокращенно сероварами), по чувствительности к специфическим фагам- фаготипами, биохимическим свойствам- хемоварами, по биологическим свойствамбиоварами и т.д. Колония- видимая изолированная структура при размножении бактерий на плотных питательных средах, может развиваться из одной или нескольких родительских клеток. Если колония развилась из одной родительской клетки, то потомство называется клон. Культура- вся совокупность микроорганизмов одного вида, выросших на плотной или жидкой питательной среде. Основной принцип бактериологической работы - выделение и изучение свойств только чистых (однородных, без примеси посторонней микрофлоры) культур. По форме выделяют следующие основные группы микроорганизмов. Шаровидные или кокки. Палочковидные. Извитые. Нитевидные. Кокковидные бактерии (кокки) по характеру взаиморасположения после деления подразделяются на: 1.Микрококки. Клетки расположены в одиночку. Входят в состав нормальной микрофлоры, находятся во внешней среде. Заболеваний у людей не вызывают. 2.Диплококки. Деление этих микроорганизмов происходит в одной плоскости, образуются пары клеток. Среди диплококков много патогенных микроорганизмов- гонококк, менингококк, пневмококк. 3.Стрептококки. Деление осуществляется в одной плоскости, размножающиеся клетки сохраняют связь (не расходятся), образуя цепочки. Много патогенных микроорганизмов- возбудители ангин, скарлатины, гнойных воспалительных процессов. 4.Тетракокки. Деление в двух взаимоперпендикулярных плоскостях с образованием тетрад (т.е. по четыре клетки). Медицинского значения не имеют. 5.Сарцины. Деление в трех взаимоперпендикулярных плоскостях, образуя тюки (пакеты) из 8, 16 и большего количества клеток. Часто обнаруживают в воздухе. 6.Стафилококки (от лат.- гроздь винограда). Делятся беспорядочно в различных плоскостях, образуя скопления, напоминающие грозди винограда. Вызывают многочисленные болезни, прежде всего гнойновоспалительные. Палочковидные формы микроорганизмов. 1.Бактерии- палочки, не образующие спор. 2.Бациллы- аэробные спорообразующие микробы. Диаметр споры обычно не превышает размера (“ширины”) клетки (эндоспоры). 3.Клостридии- анаэробные спорообразующие микробы. Диаметр споры больше поперечника (диаметра) вегетативной клетки, в связи с чем клетка напоминает веретено или теннисную ракетку. Извитые формы микроорганизмов. 1. Вибрионы и кампилобактерии- имеют один изгиб, могут быть в форме запятой, короткого завитка. 2. Спириллы- имеют 2- 3 завитка. 3. Спирохеты- имеют различное число завитков, аксостиль- совокупность фибрилл, специфический для различных представителей характер движения и особенности строения (особенно концевых участков). Из большого числа спирохет наибольшее медицинское значение имеют представители трех родов- Borrelia, Treponema, Leptospira. Классификация микроорганизмов Берджи по Роль микроорганизмов в этиопатогенезе заболеваний, характеризующихся наибольшей летальностью Ведущие причины смерти, 2004 г. Определенно играют роль в патогенезе Ассоциированы с развитием указанных патологий* 1. Заболевания сердца Chlamydia pneumoniae, вирус простого Helicobacter pylori; Mycobacterium 2. Злокачественные новообразования Вирусы гепатита В и С (печеночноклеточная карцинома); папилломавирусы (рак шейки матки); вирус Эпштейна-Барр (нозофарингеальная карцинома, лимфомы); вирус герпеса 8-го типа и ВИЧ (саркома Капоши); HTLV (лейкемии, лимфомы); H. pylori (рак желудка и 12-перстной кишки); Schistosoma haematonium (рак мочевого пузыря); Schistosoma japonicum (рак печени и прямой кишки); цитомегаловирус (посредством иммуносупрессии) Вирус гепатита С (неходжкинские лимфомы, рак щитовидной железы); Папилломавирусы (ано-генитальный рак и рак мочевого пузыря); Вирус герпеса 2-го типа (рак мочевого пузыря); Salmonella typhi (гепатобилиарный рак); Chlamydia pneumonia (рак легкого); Chlamydia trachomatis (сквамозноклеточная карцинома шейки матки); Chlamydia psittaci и C.jejuni (лимфомы); Mycoplasma sp. (опухоли различной локализации); Propionibacterium acnes (рак простаты) герпеса, цитомегаловирус, вирус гепатита С, инфекции периодонта и др. tuberculosis, энтеровирусы Echo и Coxsackie В, вирусы гепатитов А, гриппа и эпидемического паротита, Nanobacterium sanguineum, ряд неохарактеризованных вирусов Схематичное изображение различных бактерий. 1. 2. 3. 4. 5. 6. Стафилококки Диплококки Стрептококки Бактерии Вибрионы Спирохеты Строение бактериальной клетки. Обязательными органоидами являются: ядерный аппарат, цитоплазма, цитоплазматическая мембрана. 1.В центре бактериальной клетки находится нуклеоид- ядерное образование, представленное чаще всего одной хромосомой кольцевидной формы. Состоит из двухцепочечной нити ДНК. Нуклеоид не отделен от цитоплазмы ядерной мембраной. 2.Цитоплазма- сложная коллоидная система, содержащая различные включения метаболического происхождения (зерна волютина, гликогена, гранулезы и др.), рибосомы и другие элементы белоксинтезирующей системы, плазмиды (вненуклеоидное ДНК), мезосомы (образуются в результате инвагинации цитоплазматической мембраны в цитоплазму, участвуют в энергетическом обмене, спорообразовании, формировании межклеточной перегородки при делении). 3.Цитоплазматическая мембрана ограничивает с наружной стороны цитоплазму, имеет трехслойное строение и выполняет ряд важнейших функций- барьерную (создает и поддерживает осмотическое давление), энергетическую (содержит многие ферментные системы- дыхательные, окислительно- восстановительные, осуществляет перенос электронов), транспортную (перенос различных веществ в клетку и из клетки). 4.Клеточная стенка- присуща большинству бактерий (кроме микоплазм, ахолеплазм и некоторых других не имеющих истинной клеточной стенки микроорганизмов). Она обладает рядом функций, прежде всего обеспечивает механическую защиту и постоянную форму клеток, с ее наличием в значительной степени связаны антигенные свойства бактерий. В составе – два основных слоя, из которых наружный- более пластичный, внутреннийригидный. К поверхностным структурам бактерий (необязательным, как и клеточная стенка), относятся капсула, жгутики, микроворсинки. Капсула или слизистый слой окружает оболочку ряда бактерий. Выделяют микрокапсулу, выявляемую при электронной микроскопии в виде слоя микрофибрилл, и макрокапсулу, обнаруживаемую при световой микроскопии. Капсула является защитной структурой. Жгутики. Подвижные бактерии могут быть скользящие (передвигаются по твердой поверхности в результате волнообразных сокращений) или плавающие, передвигающиеся за счет нитевидных спирально изогнутых белковых (флагеллиновых по химическому составу) образований- жгутиков. По расположению и количеству жгутиков выделяют ряд форм бактерий. А.Монотрихи- имеют один полярный жгутик. В.Лофотрихи- имеют полярно расположенный пучок жгутиков. С.Амфитрихи- имеют жгутики по диаметрально противоположным полюсам. D.Перитрихи- имеют жгутики по всему периметру бактериальной клетки. Фимбрии или реснички – короткие нити, в большом количестве окружающую бактериальную клетку, с помощью которых бактерии прокрепляются к субстратам (например, к поверхности слизистых оболочек). F- пили (фактор фертильности) – аппарат конъюгации бактерий, встречаются в небольшом количестве в виде тонких белковых ворсинок. При неблагоприятных условиях, например, при недостатке воды, многие бактерии переходят в состояние покоя. Клетка теряет воду, несколько сморщивается и остается в состоянии покоя до тех пор, пока снова не появится вода. Некоторые виды переживают периоды засухи, жары или холода в форме спор. Образование спор у бактерий - это не способ размножения, так как каждая клетка дает всего одну спору и общее количество особей при этом не возрастает. Эндоспоры и спорообразование. Спорообразование- способ сохранения определенных видов бактерий в неблагоприятных условиях среды. Эндоспоры образуются в цитоплазме, представляют собой клетки с низкой метаболической активностью и высокой устойчивостью (резистентностью) к высушиванию, действию химических факторов, высокой температуры и других неблагоприятных факторов окружающей среды. Бактерии образуют только одну спору Грибы и простейшие имеют четко ограниченное ядро и относятся к эукариотам. Более подробно мы рассмотрим их строение в последующих разделах.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Роль микроорганизмов в круговороте азота, водорода, кислорода, серы, углерода и фосфора в природе. Различные типы жизни бактерий, основанные на использовании соединений различных химических веществ. Роль микроорганизмов в эволюции жизни на Земле.

    реферат , добавлен 28.01.2010

    Характеристика основных показателей микрофлоры почвы, воды, воздуха, тела человека и растительного сырья. Роль микроорганизмов в круговороте веществ в природе. Влияние факторов окружающей среды на микроорганизмы. Цели и задачи санитарной микробиологии.

    реферат , добавлен 12.06.2011

    Определение биосферы, ее эволюция, границы и состав, охрана. Свойства живого вещества. Биогенная миграция атомов. Биомасса, её распределение на планете. Роль растений, животных и микроорганизмов в круговороте веществ. Биосфера и превращение энергии.

    контрольная работа , добавлен 15.09.2013

    Роль микроорганизмов в круговороте углерода в природе. Углеродное и азотное питание прокариот с различными типами жизни. Значение микроорганизмов в геологических процессах. Типы микрофлоры почвы: зимогенная, автохтонная, олиготрофная и автотрофная.

    презентация , добавлен 18.12.2013

    Роль микроорганизмов в круговороте углерода. Определение влияния органических удобрений на микробиоту почвы. Приготовление почвенной суспензии и посев на питательные среды. Учет количества микроорганизмов методом обрастания комочков на среде Эшби.

    курсовая работа , добавлен 30.11.2014

    Обмен веществ со средой как специфическое свойство жизни. Общее значение продуцентов, консументов и редуцентов. Полный цикл редукции органического вещества. Уровни организации живой материи. Малый круговорот веществ в биосфере. Круговорот углерода и серы.

    реферат , добавлен 01.01.2010

    Виды микроорганизмов: микробы, спирохеты, риккетсии, вирусы, грибки. Рецепторы клеток: нативные, индуцированные, приобретенные. Характеристика групп микроорганизмов согласно Всемирной организации здравоохранения. Особенности патогенных микроорганизмов.

    презентация , добавлен 14.04.2012

В жизнедеятельности микроорганизмов химический состав среды играет важную роль, так как среди химических веществ, образующих среду и необходимых микроорганизмам, могут оказаться и ядовитые вещества. Эти вещества, проникнув в клетку, соединяются с элементами протоплазмы, нарушают обмен веществ и губят клетку. Ядовитое действие на микроорганизмы оказывают соли тяжелых металлов (ртути, серебра и др.), ионы тяжелых металлов (серебра, меди, цинка и др.), хлор, йод, перекись водорода, марганцевокислый калий, сернистая кислота и сернистый газ, окись углерода и углекислый газ, спирты, органические кислоты и другие вещества. В практике часть этих веществ используют для борьбы с микроорганизмами. Такие вещества называются антисептиками (противогнилостными). Антисептики обладают различным по силе бактерицидным действием. Эффективность применения антисептиков в значительной мере зависит также от их концентрации и продолжительности действия, температуры и реакции среды.

ЭКОЛОГИЯ - НАУКА О МЕСТЕ ОБИТАНИЯ
ЖИВЫХ СУЩЕСТВ И ИХ ВЗАИМООТНОШЕНИЯХ
С ОКРУЖАЮЩЕЙ СРЕДОЙ
ЭКОЛОГИЯ МИКРООРГАНИЗМОВ ИЗУЧАЕТ
МЕСТО ОБИТАНИЯ МИКРОБОВ И ИХ
ЭКОЛОГИЧЕСКИЕ СВЯЗИ
ОСНОВНЫМ ПОЛОЖЕНИЕМ ЭКОЛОГИИ
МИКРООРГАНИЗМОВ ЯВЛЯЕТСЯ
КОНЦЕПЦИЯ О ДОМИНИРОВАНИИ МИКРОБОВ В
СОЗДАНИИ БИОСФЕРЫ ЗЕМЛИ И
ПОСЛЕДУЮЩЕМ ПОДДЕРЖАНИИ ЕЕ
ЭКОЛОГИЧЕСКОГО БАЛАНСА

КОНЦЕПЦИЯ МИКРОБНОЙ ДОМИНАНТЫ
МИКРООРГАНИЗМЫ - ЕДИНСТВЕННЫЕ ЖИВЫЕ
ОБИТАТЕЛИ ЗЕМЛИ В ПЕРИОД МЕЖДУ
4 – 5 МЛРД. ЛЕТ НАЗАД
МИКРОБЫ ПОВСЕМЕСТНО РАСПРОСТРАНЕНЫ
В БИОСФЕРЕ
БИОМАССА МИКРОБОВ ПРЕОБЛАДАЕТ НАД
БИОМАССОЙ ЖИВОТНЫХ И РАСТЕНИЙ

МИКРОБЫ СПОСОБНЫ ТРАНСФОРМИРОВАТЬ
ЛЮБЫЕ ОРГАНИЧЕСКИЕ И НЕОРГАНИЧЕСКИЕ
ВЕЩЕСТВА И ВКЛЮЧАТЬ ХИМИЧЕСКИЕ
ЭЛЕМЕНТЫ И ЭНЕРГИЮ В ЦИКЛЫ
КРУГОВОРОТА ВЕЩЕСТВ И ЭНЕРГИИ
МИКРООРГАНИЗМЫ СПОСОБНЫ
САМОСТОЯТЕЛЬНО НАКАПЛИВАТЬ НОВУЮ
БИОМАССУ И ОСУЩЕСТВЛЯТЬ
ПОЛНЫЙ ЦИКЛ КРУГОВОРОТА АЗОТА,
УГЛЕРОДА И НЕКОТОРЫХ ДР. ЭЛЕМЕНТОВ,
ПОДДЕРЖИВАТЬ
РАДИАЦИОННЫЙ (ТЕПЛОВОЙ) БАЛАНС ЗЕМЛИ

ЗАДАЧИ ЭКОЛОГИЧЕСКОЙ МИКРОБИОЛОГИИ
1. ЗАЩИТА МИКРОБНЫХ ПОПУЛЯЦИЙ И
БИОЦЕНОЗОВ,
ПРИНИМАЮЩИХ УЧАСТИЕ В ПОДДЕРЖАНИИ
ЭКОЛОГИЧЕСКОГО БАЛАНСА
(АЗОТФИКСИРУЮЩИХ, АММОНИФИЦИРУЮЩИХ,
НИТРИФИЦИРУЮЩИХ И ДР.),
ОТ НЕБЛАГОПРИЯТНОГО ВОЗДЕЙСТВИЯ
ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
2. ПРЕДУПРЕЖДЕНИЕ МИКРОБНОЙ ДЕГРАДАЦИИ
ЖИВОЙ И НЕЖИВОЙ ПРИРОДЫ И
РАЗЛИЧНЫХ АНТРОПОГЕННЫХ МАТЕРИАЛОВ
(НАПРИМЕР, ПРОФИЛАКТИКА БОЛЕЗНЕЙ ЛЮДЕЙ,
ЖИВОТНЫХ, РАСТЕНИЙ, СОХРАНЕНИЕ
ПРОДОВОЛЬСТВЕННЫХ ТОВАРОВ,
ПРОМЫШЛЕННЫХ МАТЕРИАЛОВ И ДР.)

3. МИКРОБНЫЙ СИНТЕЗ НЕОБХОДИМЫХ
ЧЕЛОВЕЧЕСКОМУ
ОБЩЕСТВУ МАТЕРИАЛОВ И ВЕЩЕСТВ
(НАПРИМЕР, СИНТЕЗ МИКРОБНОГО БЕЛКА)
4. ЗАЩИТА БИОСФЕРЫ ЗЕМЛИ ОТ ИСКУССТВЕННЫХ
МУТАНТОВ И ЗАНОСА ЖИЗНИ ИЗ КОСМОСА И
ВЫНОСА ЖИЗНИ С ЗЕМЛИ В КОСМОС
5. КОЛЛЕКЦИОНИРОВАНИЕ КУЛЬТУР
МИКРООРГАНИЗМОВ
В ЦЕЛЯХ СОХРАНЕНИЯ ГЕНЕТИЧЕСКОГО ФОНДА

ОТРАСЛИ ЭКОЛОГИЧЕСКОЙ МИКРОБИОЛОГИИ
АЭРОМИКРОБИОЛОГИЯ
ИССЛЕДОВАНИЕ МИКРОБНОГО
СОСТАВА АЭРОЗОЛЕЙ,
МИКРОБНОГО ДВИЖЕНИЯ В
АЭРОЗОЛЯХ
АГРОМИКРОБИОЛОГИЯ
БИОЛОГИЧЕСКИЙ КОНТРОЛЬ,
ФИКСАЦИЯ АЗОТА, ЦИКЛ АЗОТА
БИОГЕОХИМИЯ
УГЛЕРОДНЫЕ И МИНЕРАЛЬНЫЕ
ЦИКЛЫ, КОНТРОЛЬ ПОТЕРИ И
ФИКСАЦИИ АЗОТА
БИОРЕМЕДИАЦИЯ
ДЕГРАДАЦИЯ БИОЛОГИЧЕСКИХ
КОНТАМИНАНТОВ,
ИММОБИЛИЗАЦИЯ И УДАЛЕНИЕ
НЕОРГАНИЧЕСКИХ
КОНТАМИНАНТОВ ВОДЫ И ПОЧВЫ

БИОТЕХНОЛОГИЯ
КАЧЕСТВО
ПРОДУКТОВ ПИТАНИЯ
СИНТЕЗ
ВОССТАНОВЛЕНИЕ
РЕСУРСОВ
КАЧЕСТВО ВОДЫ
ОБНАРУЖЕНИЕ ПАТОГЕНОВ И
ДР.МИКРОБОВ В ОКРУЖАЮЩЕЙ
СРЕДЕ, ОПРЕДЕЛЕНИЕ МИКРОБНОЙ
АКТИВНОСТИ В ОКРУЖАЮЩЕЙ СРЕДЕ,
ГЕННАЯ ИНЖЕНЕРИЯ и др.
ОБНАРУЖЕНИЕ ПАТОГЕНОВ В
ПРОДУКТАХ ПИТАНИЯ И ИХ
ЭЛИМИНАЦИЯ
СИНТЕЗ СПИРТОВ,
ПРОТЕИНОВ И ДРУГИХ
ПРОДУКТОВ
ВОССТАНОВЛЕНИЕ МАСЕЛ,
МЕТАЛЛОВ, БИОДЕГРАДАЦИЯ
ОТХОДОВ, РЕДУКЦИЯ ПАТОГЕНОВ
ДЕТЕКЦИЯ ПАТОГЕНОВ И ДР.ВИДОВ
МИКРОБОВ, ЭЛИМИНАЦИЯ
ПАТОГЕНОВ

ОСНОВНЫЕ ПОНЯТИЯ
ЭКОЛОГИЧЕСКОЙ МИКРОБИОЛОГИИ
ПОПУЛЯЦИИ МИКРООРГАНИЗМОВ –
СОВОКУПНОСТЬ ОСОБЕЙ ОДНОГО ВИДА,
ОТНОСИТЕЛЬНО ДЛИТЕЛЬНО
ОБИТАЮЩИХ НА ОПРЕДЕЛЕННОЙ
ТЕРРИТОРИИ (В БИОТОПЕ).
БИОТОП - МЕСТО ОБИТАНИЯ ПОПУЛЯЦИИ,
ХАРАКТЕРИЗУЮЩЕЕСЯ ОТНОСИТЕЛЬНО
ОДНОРОДНЫМИ УСЛОВИЯМИ.

БИОЦЕНОЗ - СОВОКУПНОСТЬ ПОПУЛЯЦИЙ,
ОБИТАЮЩИХ В ТОМ ИЛИ ИНОМ БИОТОПЕ.
ЭКОСИСТЕМА - БИОГЕОЦЕНОЗ –
БИОЦЕНОЗ, ОБИТАЮЩИЙ В ТОМ ИЛИ ИНОМ
БИОТОПЕ.
БИОСФЕРА - СОВОКУПНОСТЬ ВСЕХ ЭКОСИСТЕМ.
МИКРОБИОЦЕНОЗ
МИКРОБНОЕ СООБЩЕСТВО, АССОЦИАЦИЯ) –
СОВОКУПНОСТЬ ПОПУЛЯЦИЙ
РАЗНЫХ ВИДОВ МИКРООРГАНИЗМОВ,
ОБИТАЮЩИХ В ОПРЕДЕЛЕННОМ БИОТОПЕ
(НАПРИМЕР, В ВОДОЕМЕ).

ВАЖНЫЙ РАЗДЕЛ ЭКОЛОГИЧЕСКОЙ
МИКРОБИОЛОГИИ – ИЗУЧЕНИЕ ЭКОЛОГИЧЕСКИХ
СВЯЗЕЙ
ЭКОЛОГИЧЕСКИЕ СВЯЗИ - СВЯЗИ,
ВЗАИМООТНОШЕНИЯ МЕЖДУ
БИОГЕННЫМИ И АБИОГЕННЫМИ ФАКТОРАМИ,
ВХОДЯЩИМИ В СОСТАВ ЭКОСИСТЕМЫ
ИЛИ БИОСФЕРЫ
ВНУТРИВИДОВЫЕ
МЕЖВИДОВЫЕ
СВЯЗИ МЕЖДУ
ПОПУЛЯЦИЯМИ И
ФИЗИЧЕСКИМИ И
ХИМИЧЕСКИМИ
ФАКТОРАМИ

СИМБИОЗ
ПОЛЬЗА
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 2
ПОЛЬЗА
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 2

МУТУАЛИЗМ
ПОЛЬЗА
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 2
ПОЛЬЗА
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 2

АНТАГОНИЗМ
УГНЕТЕНИЕ
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 2
УГНЕТЕНИЕ
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 2

КОММЕНСАЛИЗМ
ПОЛЬЗА
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 2
ПОПУЛЯЦИЯ 2

НЕЙТРАЛИЗМ
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 1
ПОПУЛЯЦИЯ 2
ПОПУЛЯЦИЯ 2

ПАРАЗИТИЗМ
ОРГАНИЗМ - ХОЗЯИН
ПАРАЗИТ

АБИОГЕННЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ
НА ЖИЗНЕСПОСОБНОСТЬ МИКРООРГАНИЗМОВ
ОТНОСИТЕЛЬНАЯ
ВЛАЖНОСТЬ
КИСЛОРОД
ИОНИЗИРУЮЩЕЕ
ИЗЛУЧЕНИЕ
ТЕМПЕРАТУРА
рН СРЕДЫ

МЕЗОФИЛЬНЫЕ МИКРООРГАНИЗМЫ –
ТЕМПЕРАТУРНЫЙ ОПТИМУМ В
ПРЕДЕЛАХ ОТ 30 ДО 40°С
МАКСИМАЛЬНАЯ ТЕМПЕРАТУРА
45-50 С
МИНИМАЛЬНАЯ ТЕМПЕРАТУРА
5 - 10 С

ПСИХРОФИЛЬНЫЕ МИКРООРГАНИЗМЫ,
РАСТУТ ПРИ ТЕМПЕРАТУРАХ НИЖЕ 20 С
ОПТИМУМ - НИЖЕ 15 С,
МИНИМУМ - В ОБЛАСТИ ОТРИЦАТЕЛЬНЫХ
ЗНАЧЕНИЙ ТЕМПЕРАТУР
МОЖНО ВЫДЕЛИТЬ В ЧИСТУЮ
КУЛЬТУРУ ИЗ ОКЕАНИЧЕСКИХ ВОД
ПРЕДСТАВИТЕЛИ РОДОВ PSEUDOMONAS,
FLAVOBACTERIUM, ACHROMOBACTER,
ALCALIGENES

ТЕРМОФИЛЬНЫЕ МИКРООРГАНИЗМЫ –
ПРИ ТЕМПЕРАТУРЕ 50 С И ВЫШЕ
ОБЫЧНЫЕ ТЕРМОФИЛЫ
ОПТИМУМ РОСТА
55 ДО 65 С,
АКТИВНО РАЗВИВАЮТСЯ В КОМПОСТЕ, В
САМОРАЗОГРЕВАЮЩИХСЯ СКОПЛЕНИЯХ
ТОРФА И УГЛЯ, В СИСТЕМАХ
ВОДОСНАБЖЕНИЯ ГОРЯЧЕЙ ВОДОЙ

ЭКСТРЕМАЛЬНЫЕ ТЕРМОФИЛЫ
ОКОЛО 90°С И ДАЖЕ ВЫШЕ,
И НЕ РАСТУЩИЕ ПРИ ТЕМПЕРАТУРЕ НИЖЕ
60-65 С
ГИПЕРТЕРМОФИЛЫТЕМПЕРАТУРНЫЙ МАКСИМУМ ВЫШЕ
100 С
НЕКОТОРЫЕ ИЗ НИХ СПОСОБНЫ РАСТИ
ПРИ ТЕМПЕРАТУРЕ 115-120 С
ОБИТАЮТ В НАЗЕМНЫХ И МОРСКИХ
ГОРЯЧИХ ИСТОЧНИКАХ И В
ГЛУБОКОВОДНЫХ МОРСКИХ
ГИДРОТЕРМАХ

Thermus aquaticus Обитает в горячих источниках Йеллоустонского национального парка (США) и других подобных регионах, гейзерах при температурах вы

THERMUS AQUATICUS
ОБИТАЕТ В ГОРЯЧИХ ИСТОЧНИКАХ
ЙЕЛЛОУСТОНСКОГО НАЦИОНАЛЬНОГО ПАРКА (США)
И ДРУГИХ ПОДОБНЫХ РЕГИОНАХ, ГЕЙЗЕРАХ ПРИ
ТЕМПЕРАТУРАХ ВЫШЕ 55 °C.
ПРОДУЦЕНТ ТАГ ДНК-ПОЛИМЕРАЗЫ
ТЕМПЕРАТУРНЫЙ ОПТИМУМ РОСТА – 70-72 С
ТЕМПЕРАТУРНЫЙ МИНИМУМ - 40 С
ТЕМПЕРАТУРНЫЙ МАКСИМУМ - 79 С

Отношение микроорганизмов к солености воды

– ПРЕСНОВОДНЫЕ (НЕГАЛОФИЛЬНЫЕ) РАСТУТ НА СРЕДАХ С СОДЕРЖАНИЕМ
СОЛЕЙ МЕНЕЕ 0.01%, ИХ РОСТ
ТОРМОЗИТСЯ ПРИ КОНЦЕНТРАЦИИ NACL
– 3%
– УМЕРЕННЫЕ ГАЛОФИЛЫ РАСТУТ В
ДИАПАЗОНЕ СОЛЕНОСТИ ОТ 3 ДО 15%
(ОПТИМУМ ОКОЛО 10%)
– ЭКСТЕРМАЛЬНЫЕ ГАЛОФИЛЫ
РАЗВИВАЮТСЯ ПРИ КОНЦЕНТРАЦИИ
NACL ОТ 12-15% ВПЛОТЬ ДО
НАСЫЩЕННЫХ РАСТВОРОВ СОЛИ –
30%, ОПТИМУМ РОСТА – 10-20% NACL

© 2024
reaestate.ru - Недвижимость - юридический справочник