17.07.2019

Управление обеспечивает оптимальное управляемой системы. Оптимальные системы автоматического управления. Например, для системы управления ЛА, описываемым уравнением


В общем случае система автоматического управления состоит из объекта управления ОУ с рабочим параметром Y, регулятора Р и программатора (задатчика) П (рис. 6.3), вырабатывающего задающее воздействие (программу) для достижения целей управления при условии выполнения качественных и количественных требований. Программатор учитывает совокупность внешней информации (сигнал И).

Рис. 6.3. Структура оптимального управления

Задача создания оптимальной системы состоит в том, чтобы для заданного объекта управления синтезировать регулятор и программатор, которые наилучшим образом решают требуемую цель управления.
В теории автоматического управления рассматриваются две родственные задачи: синтез оптимального программатора и синтез оптимального регулятора. Математически они формулируются одинаково и решаются одними и теми же методами. В то же время задачи имеют специфические особенности, которые на определенном этапе требуют дифференцированного подхода.

Система с оптимальным программатором (оптимальное программное управление) получила название оптимальной по режиму управления. Систему с оптимальным регулятором называют оптимальной по переходному режиму. Система автоматического управления называется оптимальной, если оптимальными являются регулятор и программатор.
В ряде случаев считается, что программатор задан и требуется определить только оптимальный регулятор.

Задача синтеза оптимальных систем формулируется как вариационная задача или задача математического программирования. При этом, кроме передаточной функции объекта управления, задаются ограничения на управляющие воздействия и рабочие параметры объекта управления, краевые условия и критерий оптимальности. Краевые (граничные) условия определяют состояние объекта в начальный и конечный момент времени. Критерий оптимальности, который является числовым показателем качества системы, обычно задается в виде функционала

J = J [u (t ), y (t )],

где u (t ) – управляющие воздействия; y (t ) – параметры объекта управления.

Задача оптимального управления формулируется следующим образом: при заданном объекте управления, ограничениях и краевых условиях найти такое управление (программатор или регулятор), при котором критерий оптимальности принимает минимальное (или максимальное) значение.

28. Обработка информации в АСУ ТП. Связь интервала корреляции с час­тотой опроса первичных измерительных преобразователей. Выбор частоты опроса первичных измерительных преобразователей.

Определение и необходимость построения оптимальных систем автоматического управления

Системы автоматического управления обычно проектируют, исходя из требований обеспечения тех или иных показателей качества. Во многих случаях необходимое повышение динамической точности и улучшение переходных процессов систем автоматического управления достигается с помощью корректирующих устройств.

Особенно широкие возможности повышения показателей качества дает введение в САУ разомкнутых компенсационных каналов и дифференциальных связей, синтезированных из того или иного условия инвариантности ошибки относительно задающего или возмущающих воздействий . Однако эффект влияния корректирующих устройств, разомкнутых компенсационных каналов и эквивалентных им дифференциальных связей на показатели качества САУ зависит от уровня ограничения сигналов нелинейными элементами системы. Выходные сигналы дифференцирующих устройств, обычно кратковременные по длительности и значительные по амплитуде, ограничиваются элементами системы и не приводят к улучшению показателей качества системы, в частности ее быстродействия. Лучшие результаты решения задачи повышения показателей качества САУ при наличии ограничений сигнала дает так называемое оптимальное управление.

Задача синтеза оптимальных систем строго сформулирована сравнительно недавно, когда было дано определение понятия критерия оптимальности. В качестве критерия оптимальности в зависимости от цели управления могут быть выбраны различные технические или экономические показатели управляемого процесса. В оптимальных системах обеспечивается не просто некоторое повышение того или иного технико-экономического показателя качества, а достижение минимально или максимально возможного его значения.

Если критерий оптимальности выражает технико-экономические потери (ошибки системы, время переходного процесса, расход энергии, средств, стоимость и т. п), то оптимальным будет такое управление, которое обеспечивает минимум критерия оптимальности. Если Же он выражает рентабельность (к. п. д., производительность, прибыль, дальность полета ракеты и т. д.), то оптимальное управление должно обеспечить максимум критерия оптимальности.

Задача определения оптимальной САУ, в частности синтез оптимальных параметров системы при поступлении на ее вход задающего

воздействия и помехи, являющихся стационарными случайными сигналами, рассматривалась в гл. 7. Напомним, что в данном случае в качестве критерия оптимальности принято среднеквадратическое значение ошибки (СКО). Условия повышения точности воспроизведения полезного сигнала (задающего воздействия) и подавления помехи носят противоречивый характер, и поэтому возникает задача выбора таких (оптимальных) параметров системы, при которых СКО принимает наименьшее значение.

Синтез оптимальной системы при среднеквадратическом критерии оптимальности является частной задачей. Общие методы синтеза оптимальных систем основываются на вариационном исчислении. Однако классические методы вариационного исчисления для решения современных практических задач, требующих учета ограничений, во многих случаях оказываются непригодными. Наиболее удобными методами синтеза оптимальных систем автоматического управления являются метод динамического программирования Беллмана и принцип максимума Понтрягина.

Таким образом, наряду с проблемой улучшения различных показателей качества САУ возникает задача построения оптимальных систем, в которых достигается экстремальное значение того или иного технико-экономического показателя качества.

Разработка и внедрение оптимальных систем автоматического управления способствует повышению эффективности использования производственных агрегатов, увеличению производительности труда, улучшению качества продукции, экономии электроэнергии, топлива, сырья и т.

Понятия о фазовом состоянии и фазовой траектории объекта

В технике часто возникает задача перевода управляемого объекта (процесса) из одного состояния в другое. Например, при целеуказании необходимо антенну радиолокационной станции повернуть из начального положения с начальным азимутом в заданное положение с азимутом Для этого на электродвигатель, связанный с антенной через редуктор, подают управляющее напряжение и. В каждый момент времени состояние антенны характеризуется текущим значением угла поворота и угловой скоростью Эти две величины изменяются в зависимости от управляющего напряжения и. Таким образом, существуют три связанных между собой параметра и (рис. 11.1).

Величины характеризующие состояние антенны, называются фазовыми координатами, и - управляющим воздействием. При целеуказании РЛС типа станции орудийной наводки возникает задача поворота антенны по азимуту и углу места. В этом случае будем иметь четыре фазовые координаты объекта и два управляющих воздействия. У летящего самолета можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости ) и несколько управляющих воздействий (тяга двигателя, величины, характеризующие положение рулей

Рис. 11.1. Схема объекта с одним, управляющим воздействием и двумя фазовыми координатами.

Рис. 11.2. Схема объекта с управляющими воздействиями и фазовыми координатами.

Рис. 11.3. Схема объекта с векторным изображением управляющего воздействия и и фазового состояния объекта

высоты и направления, элеронов). В общем случае в каждый момент времени состояние объекта характеризуется фазовыми координатами а к объекту может быть приложено управляющих воздействий (рис. 11.2).

Под переводом управляемого объекта (процесса) из одного состояния в другое следует понимать не только механическое перемещение (например, антенны РЛС, самолета), но также требуемое изменение различных физических величин: температуры, давления, влажности кабины, химического состава того или иного сырья при соответствующем управляемом технологическом процессе.

Управляющие воздействия удобно считать координатами некоторого вектора называемого вектором управляющего воздействия. Фазовые координаты (переменные состояния) объекта также можно рассматривать, как координаты некоторого вектора или точки в -мерном пространстве с координатами Эту точку называют фазовым состоянием (вектором состояния) объекта, а -мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством (пространством состояний) рассматриваемого объекта. При использовании векторных изображений управляемый объект можно изобразить, как показано на рис. 11.3, где и - вектор управляющего воздействия и представляет собой точку в фазовом пространстве, характеризующую фазовое состояние объекта. Под влиянием управляющего воздействия и фазовая точка перемещается, описывая в фазовом пространстве некоторую линию, называемую фазовой траекторией рассматриваемого движения объекта.

Любая автоматическая система предназначена для управления каким-либо объектом, должна быть построена таким образом, чтобы осуществляемое ею управление было оптимальным, т.е наилучшем в том или ином смысле. Задачи оптимального управления чаще всего возникают в подсистемах управления технологическими процессами. В каждом случае существует некоторая технологическая задача, для выполнения которой предназначается соответствующая машина или установка (объект управления), снабженная соответствующая системой управления, т.е. речь идет о некоторой САУ, состоящей из объекта управления и совокупности устройств, которые обеспечивают управление этим объектом. Как правило эта совокупность включает в себя измерительные, усилительные преобразовательные и исполнительные устройства. Если объединить усилительные, преобразовательные и исполнительные устройства в одно звено, называемое управляющим устройством или регулятором, то функциональная схема САУ может быть приведена к виду на рис. 1. 1.

Рис. 1. 2 Функциональная схема оптимальной системы

На вход управляющего устройства поступает задающее воздействие, которое содержит инструкцию о том, каково должно быть состояние объекта - так называемое «желаемое состояние».

На объект управления может поступать возмущающие воздействие z, представляющие нагрузку или помеху. Измерение координат объекта измерительным устройством может производиться с некоторыми случайными погрешностями x (ошибка) .

Таким образом, задачей управляющего устройства является выработка такого управляющего воздействия, чтобы качество функционирования САУ в целом было бы наилучшим в некотором смысле. Для определения алгоритма управляющего устройства необходимо знать характеристики объекта и характер информации об объекте и возмущениях, которая поступает в управляющее устройство.

Под характеристиками объекта понимают зависимость выходных величин объекта от входных

где F, в общем случае,-- оператор, который устанавливает закон соответствия между двумя множествами функций. Оператор F объекта может быть задан различными способами: с помощью формул, таблиц, графиков. Его задают и в виде системы дифференциальных уравнений, которая в векторной форме записывается так

где и задавалось начальное и конечное значения вектора.

Существует много различных путей решения рассматриваемой задачи. Но только один способ управления объектом дает наилучший в некотором смысле результат. Этот способ управления и реализующую его систему называют оптимальными.

Чтобы иметь количественные основания для предпочтения одного способа управления всем другим, необходимо определить цель управления, а затем ввести меру, характеризующую эффективность достижения цели -критерий оптимальности управления. Обычно критерий оптимальности - это числовая величина, зависящая от изменяющихся во времени и пространстве координат и параметров системы так, что каждому закону управления соответствует определенное значение критерия. В качестве критерия оптимальности могут быть выбраны различные технические и экономические показатели рассматриваемого процесса.

Иногда к системе управления предъявляются различные, подчас противоречивые требования. Законы управления, которые одновременно наилучшим образом удовлетворяли бы каждому требованию, не существует. Поэтому из всех требований нужно выбрать одно главное, которое должно удовлетворяться наилучшим образом. Другие требования играют роль ограничений. Следовательно, выбор критерия оптимальности должен производиться, только на основании изучения технологии и экономики рассматриваемого объекта и среды. Эта задача выходит за рамки теории ОУ.

При решении задач оптимального управления наиболее важным является задание цели управления, что математически можно рассматривать как задачу достижения экстремума некоторой величины Q -- критерия оптимальности. В математике такую величину называют функционалом. В зависимости от решаемой задачи необходимо достижение минимума либо максимума Q. Например, запишем критерий оптимальности, в котором Q должно быть минимально

Как видно, величина Q зависит от функций.

В качестве критерия оптимальности могут быть приняты различные технические и технико-экономические показатели и оценки. Выбор критерия оптимальности -- это инженерная и инженерно-экономическая задача, которая решается на основе глубокого и всестороннего изучения управляемого процесса. В теории управления широко распространены интегральные функционалы, характеризующие качество функционирования системы. Достижение максимального или минимального значения этого функционала указывает на оптимальное поведение или состояние системы. Интегральные функционалы обычно отражают условия работы объектов управления и учитывают ограничения (по нагреву, прочности, мощности источников энергии и т. д.), накладываемые на координаты .

Для процессов управления использоваться такие критерии:

1. оптимальное быстродействие (время переходного процесса)

2. минимум среднеквадратичного значения ошибки.

3. минимум расхода затрачиваемой энергии.

Таким образом, критерий оптимальности может относиться к переходному или к установившемуся процессу в системе.

В зависимости от критерия оптимальности оптимальные системы можно разделить на два основных класса -- оптимальные по быстродействию и оптимальные по точности.

Системы оптимального управления в зависимости от характера критерия оптимальности можно разделить на три типа:

а) равномерно-оптимальные системы;

б) статистически-оптимальные системы;

в) минимаксно-оптимальные системы.

Равномерно-оптимальная -- это такая система, у которой каждый отдельный процесс является оптимальным. Например, в оптимальных по быстродействию системах при любых начальных условиях и любых возмущениях система приходит наикратчайшим во времени путем к требуемому состоянию.

В статистически-оптимальных системах критерий оптимальности имеет статистический характер. Такие системы должны быть наилучшими в среднем. Здесь не требуется или невозможна оптимизация в каждом отдельном процессе. В качестве статистического критерия чаще всего фигурирует среднее значение какого-либо первичного критерия, например математическое ожидание выхода некоторой величины за определенные пределы.

Минимаксно-оптимальные -- это такие системы, которые в наихудшем случае дают возможно наилучший результат. Они отличаются от равномерно-оптимальных тем, что в ненаихудшем случае могут дать худший результат, чем какая-либо другая система .

Оптимальные системы можно также подразделить на три типа в зависимости от способа получения информация об управляемом объекте:

оптимальные системы с полной информацией об объекте;

оптимальные системы с неполной информацией об объекте и пассивным ее накоплением;

оптимальные системы с неполной информацией об объекте и активным ее накоплением в процессе управления (системы дуального управления).

Существует две разновидности задач синтеза оптимальных систем:

Определение оптимальных значений параметров регулятора при заданных параметрах объекта и заданной структуре системы;

Синтез структуры и определение параметров регулятора при заданных параметрах и структуре объекта управления.

Решение задач первого типа возможно различными аналитическими методами при минимизации интегральных оценок, а также с помощью вычислительной техники (моделирование на ЭВМ), рассматривая заданный критерий оптимальности.

Решение задач второго типа основано на использовании специальных методов: методы классического вариационного исчисления, принципа максимума Понтрягина и динамического программирования Беллмана, а также методы математического программирования. Для синтеза оптимальных систем при случайных сигналах используются методы Винера, вариационные и частотные методы. При разработке адаптивных систем наиболее широкое применение имеют градиентные методы, позволяющие определить законы, изменения настраиваемых параметров.

Оптимальные системы – это системы, в которых заданное качество работы достигается за счет максимального использования возможностей объекта, иными словами это системы, в которых объект работает на пределе своих возможностей.

Оптимальная СУ – система управления, выбранная тем или иным способом и имеет наилучшие качества.

Оценка функции СУ производится по критерию оптимальности. Задачей теории оптимальности СУ является определение в общем виде законов управления объектом. По этим законам можно судить, что можно и чего нельзя достигнуть в реальных условиях. Классической постановкой задачи является задача определения оптимального алгоритма управления при наличии априорной информации (математического описания включающее ограничения наложенные на любые координаты системы) об объекте управления.

Рассмотрим апериодическое звено первого порядка

W (p) = K/(Tp+1) (1)

u ≤ A, (2)

для которого необходимо обеспечить минимальное время перехода у из начального состояния y (0) в конечноеy k . Переходная функция такой системы приK =1 выглядит следующим образом

Рис. 1.1. Переходная функция системы при U= const .

Рассмотрим ситуацию, когда на вход объекта подаем максимально возможное управляющее воздействие.

Рис.1.2. Переходная функция системы при U=A= const .

t 1 - минимально возможное время перехода y из нулевого состояния в конечное для данного объекта.

Для получения такого перехода существует два закона управления:

    программное управление

A, t < t 1

y k , t ≥ t 1 ;

    закон управления типа обратной связи

A, y < y k

y = (4)

y k , y ≥ y k ;

Второй закон более предпочтителен и позволяет обеспечить управление при помехах.

Рис. 1.3. Структурная схема системы с законом управления типа обратной связи.

Цель управления - требования, предъявленные к СУ.

    ограничения на входные параметры, например, допуски на изготовляемую продукцию, ошибки стабилизации управляемой величины,

    экстремальные условия (мах мощности или кпд, мин потери энергии),

    некоторые показатели качества (содержание вредных компонентов в конечном продукте)

Строгая формализация цели управления очень сложна из-за наличия подсистем

При формализации критерия необходимо учитывать факторы, влияющие на поведение СУ более высокого уровня. Например, при добыче полезного ископаемого – мах выхода товара. Но при этом ухудшается качество, т.е. необходимо учитывать заданное качество.

Таким образом, при выборе формализованного (математического) выражения критерия оптимальности необходимо учитывать:

1) критерий оптимальности должен отражать экономические показатели или величины с ними связанные.

2) для конкретной СУ учитывается только 1 критерий (если многокретериальная задачах то глобальный критерий- функция от частных критериев.

3) критерий должен быть связан с управляющими воздействиями, иначе он бесполезен.

4) критериальная функция иметь подходящую форму, желательно, чтоб критерий имел 1 экстремум,

5) информация, необходимая для критерия не должна быть избыточной. Это позволяет мах упростить систему измерительных устройств. И повысить надежность функционирования системы в целом.

Тестовые задания для самоконтроля

1. Управление это -

А) достижение избранных целей в практической деятельности

Б) достижение избранных целей в научной деятельности

В) достижение избранных целей в реальной действительности

Г) достижение избранных целей в теоретической деятельности

Д) достижение избранных целей в психологической деятельности

2. В теории управления возможна постановка скольких задач

3. Суть задачи управления заключается

А) в управлении объектом в процессе его функционирования без нашего непосредственного соучастия в процессе

Б) в управлении объектом в процессе его функционирования с нашим

непосредственном участии в процессе

Д) в управлении объектом в процессе его функционирования с помощью датчиков

4. Суть задачи самоуправления заключается

А) в управлении объектом в процессе его функционирования без нашего непосредственного соучастия в процессе

Б) в управлении объектом в процессе его функционирования с помощью датчиков

В) в управлении объектом в процессе его функционирования с помощью программы

Г) в управлении объектом в процессе его функционирования с помощью ЭВМ

Д) все ответы верны

5. На основании выбранного критерия оптимальности составляется

А) целевая функция

Б) зависимость параметров

В) целевая функция, представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение

Г) зависимость параметров, влияющих на ее значение

Д) все ответы верны

В общем случае автоматическая система состоит из объекта управления и совокупности устройств, которые обеспечивают управление этим объектом. Как правило, эта совокупность устройств включает в себя измерительные устройства, усилительные и преобразовательные устройства, а также исполнительные устройства. Если объединить эти устройство в одно звено (управляющее устройство), то структурная схема системы выглядит следующим образом:

В автоматической системе информация о состоянии объекта управления через измерительное устройство поступает на вход управляющего устройства. Такие системы называются системами с обратной связью или замкнутыми системами. Отсутствие этой информации в алгоритме управления говорит о том, что система разомкнута. Состояние объекта управления в любой момент времени будем описывать переменными
, которые называются координатами системы или переменными состояния. Их удобно считать координатами- мерного вектора состояния.

Измерительное устройство выдает информацию о состоянии объекта. Если на основании измерения вектора
могут быть найдены значения всех координат
вектора состояния
, то говорят, что система полностью наблюдаема.

Управляющее устройство вырабатывает управляющее воздействие
. Таких управляющих воздействий может быть несколько, они образуют- мерный управляющий вектор.

На вход управляющего устройства поступает задающее входное воздействие
. Это входное воздействие несет информацию о том, какое должно быть состояние объекта. На объект управления может действовать возмущающее воздействие
, которое представляет собой нагрузку или помеху. Измерение координаты объекта, как правило, осуществляется с некоторыми погрешностями
, которые тоже носят случайный характер.

Задачей управляющего устройства является выработка такого управляющего воздействия
, чтобы качество функционирования автоматической системы в целом было бы наилучшим в некотором смысле.

Мы будем рассматривать такие объекты управления, которые являются управляемыми. То есть вектор состояния можно изменять требуемым образом путем соответствующего изменения вектора управления. Будем подразумевать, что объект полностью наблюдаемый.

Так, например, положение летательного аппарата характеризуется шестью координатами состояния. Это
- координаты центра масс,
- углы Эйлера, определяющие ориентацию летательного аппарата относительно центра масс. Положение летательного аппарата можно изменить с помощью рулей высоты, курса, элерона и с помощью уклонения вектора силы тяги. Таким образом управляющий вектор определен следующим образом:

- угол отклонения рулей высоты

- курс

- элерон

- тяга

Вектор состояния
в этом случае определяется следующим образом:

Можно поставить задачу выбора управления, с помощью которого летательный аппарат переводится из заданного начального состояния
в заданное конечное состояние
с минимальными затратами топлива или за минимальное время.

Дополнительная сложность при решении технических задач возникает в силу того, что на управляющее воздействие и на координаты состояния объекта управления, как правило, накладываются различные ограничения.

На любой угол рулей высоты, курса, элерона существуют ограничения:



- тяга сама по себе ограничена.

На координаты состояния объекта управления и их производные также накладываются ограничения, которые связаны с допустимыми перегрузками.

Мы будем рассматривать объекты управления, которые описываются дифференциальным уравнением:


(1)

Или в векторном виде:

--мерный вектор состояния объекта

--мерный вектор управляющих воздействий

- функция правой части уравнения (1)

На вектор управления
накладывается ограничение, мы будем полагать, что его значения принадлежат некоторой замкнутой областинекоторого-мерного пространства. Это означает, что управляющая функция
в любой момент времени принадлежит области(
).

Так, например, если координаты управляющей функции удовлетворяет неравенствам:


то область является-мерным кубом.


© 2024
reaestate.ru - Недвижимость - юридический справочник