14.07.2019

Квантовая криптография основные принципы. Абсолютная защита: что такое квантовые коммуникации и как они работают. Современные квантовые компьютеры


Вы читаете гостевой пост Романа Душкина (Blogspot , ЖЖ , Twitter). Также вас могут заинтересовать другие заметки за авторством Романа:

  • Алгоритм Шора, его реализация на языке Haskell и результаты некоторых опытов ;
  • Факторизация числа при помощи квантового алгоритма Гровера ;
  • Квантовый зоопарк: карта отношений квантовых алгоритмов ;
  • … и далее по ссылкам;

Если вы интересуетесь криптографией, попробуйте еще обратить внимание на заметки Эллиптическая криптография на практике и Памятка по созданию безопасного канала связи моего авторства.

Вся история криптографии основывается на постоянном противоборстве криптографов м криптоаналитиков. Первые придумывают методы сокрытия информации, а вторые тут же находят методы взлома. Тем не менее, теоретически показано, что победа в такой гонке вооружений всегда останется на стороне криптографов, поскольку имеется абсолютно невзламываемый шифр — одноразовый блокнот. Так же есть некоторые очень сложно взламываемые шифры, для получения скрытой информации без пароля из которых у криптоаналитика практически нет шансов. К таким шифрам относятся перестановочные шифры посредством решеток Кардано, шифрование при помощи редких текстов в виде ключей и некоторые другие.

Все перечисленные методы достаточно просты для применения, в том числе и одноразовый блокнот. Но все они обладают существенным недостатком, который называется проблемой распределения ключей . Да, одноразовый блокнот невозможно взломать. Но чтобы использовать его, необходимо иметь очень мощную инфраструктуру по распространению этих самых одноразовых блокнотов среди всех своих адресатов, с которыми ведется секретная переписка. То же самое касается и других подобных методов шифрования. То есть перед тем, как начать обмен шифрованной информацией по открытым каналам, необходимо по закрытому каналу передать ключ. Даже если ключом обмениваться при личной встрече, у криптоаналитика всегда имеются возможности по альтернативному способу добывания ключений (от ректального криптоанализа не защищен практически никто).

Обмен ключами при личной встрече — это очень неудобная штука, которая серьезно ограничивает использование абсолютно невзламываемых шифров. Даже государственные аппараты очень небедных государств позволяют себе это только для очень немногих серьезных людей, занимающих сверхответственные должности.

Однако, в конце концов, был разработан протокол обмена ключами, который позволил сохранять секрет при передаче ключа по открытому каналу (протокол Диффи-Хеллмана). Это был прорыв в классической криптографии, и по сей день этот протокол с модификациями, защищающими от атак класса MITM , используется для симметричного шифрования. Сам протокол основан на гипотезе о том, что обратная задача для вычисления дискретного логарифма является очень сложной. Другими словами, этот стойкость этого протокола зиждется только на том, что на сегодняшний день не существует вычислительных мощностей или эффективных алгоритмов для дискретного логарифмирования.

Проблемы начнутся тогда, когда будет реализован квантовый компьютер достаточной мощности. Дело в том, что Питер Шор разработал квантовый алгоритм , который решает не только задачу факторизации, но и задачу поиска дискретного логарифма. Для этого квантовая схема незначительно изменяется, а принцип работы остается тем же. Так что хитроумный изобретатель одним ударом убил двух криптографических зайцев — асимметричную криптографию RSA и симметричную криптографию Диффи-Хеллмана. Все пойдет прахом, как только на свет появится он, универсальный квантовый компьютер (не факт, что его еще нет; просто мы можем об этом даже и не знать).

Но модель квантовых вычислений как повергла криптографов в шок и трепет, так и дала им новую надежду. Именно квантовая криптография позволила придумать новый метод распределения ключей, в котором отсутствуют многие проблемы схемы Диффи-Хеллмана (например, простая атака MITM абсолютно не поможет в силу чисто физических ограничений квантовой механики). Более того, квантовая криптография устойчива и к квантовым алгоритмам поиска ключей, так как основана на совершенно ином аспекте квантовой механики. Так что сейчас мы изучим квантовый метод секретного обмена ключами по открытому каналу.

Квантовая криптография - метод защиты коммуникаций, основанный на принципах квантовой физики . В отличие от традиционной криптографии , которая использует математические методы, чтобы обеспечить секретность информации , квантовая криптография сосредоточена на физике, рассматривая случаи, когда информация переносится с помощью объектов квантовой механики . Процесс отправки и приёма информации всегда выполняется физическими средствами, например, при помощи электронов в электрическом токе, или фотонов в линиях волоконно-оптической связи . Подслушивание может рассматриваться как изменение определённых параметров физических объектов - в данном случае, переносчиков информации.

Технология квантовой криптографии опирается на принципиальную неопределённость поведения квантовой системы, выраженную в принципе неопределённости Гейзенберга - невозможно одновременно получить координаты и импульс частицы, невозможно измерить один параметр фотона, не исказив другой.

Используя квантовые явления можно спроектировать и создать такую систему связи, которая всегда может обнаруживать подслушивание. Это обеспечивается тем, что попытка измерения взаимосвязанных параметров в квантовой системе вносит в неё нарушения, разрушая исходные сигналы, а значит, по уровню шума в канале легитимные пользователи могут распознать степень активности перехватчика.

Энциклопедичный YouTube

    1 / 5

    ✪ Что такое квантовая криптография и криптовалюта? Нестандартная модель.

    ✪ Квантовая криптография - Сергей Кулик

    ✪ Квантовая криптография

    ✪ А.С. Трушечкин. Математика квантовой механики

    ✪ Квантовые технологии №7: криптография и связь

    Субтитры

История возникновения

Впервые идея защиты информации с помощью квантовых объектов была предложена Стивеном Визнером в 1970 году. Спустя десятилетие Чарльз Беннет (IBM) и Жиль Брассар (Монреальский университет), знакомые с работой Визнера, предложили передавать секретный ключ с использованием квантовых объектов. В 1984 году они предположили возможность создания фундаментально защищённого канала с помощью квантовых состояний. После этого ими была предложена схема (BB84), в которой легальные пользователи (Алиса и Боб) обмениваются сообщениями, представленными в виде поляризованных фотонов, по квантовому каналу.

Описанный алгоритм носит название протокола квантового распределения ключа BB84 . В нём информация кодируется в ортогональные квантовые состояния. Помимо использования ортогональных состояний для кодирования информации, можно использовать и неортогональные состояния (например, протокол B92).

Алгоритм Беннета

В 1991 году Чарльзом Беннетом был предложен следующий алгоритм для выявления искажений в переданных по квантовому каналу данных:

  • Отправитель и получатель заранее оговаривают произвольность расположения битов в строках, что определяет произвольный характер положения ошибок.
  • Все строки разбиваются на блоки длины k. Где k выбирается так, чтобы минимизировать вероятность ошибки.
  • Отправитель и получатель определят четность каждого блока, и сообщают её друг другу по открытому каналу связи. После этого в каждом блоке удаляют последний бит.
  • Если четность двух каких-либо блоков оказалось различной, отправитель и получатель производят итерационный поиск неверных битов и исправляют их.
  • Затем весь алгоритм выполняется заново для другого (большего) значения k. Это делается для того, чтобы исключить ранее незамеченные кратные ошибки.
  • Чтобы определить все ли ошибки были обнаружены, проводится псевдослучайная проверка. Отправитель и получатель открыто сообщают о произвольной перестановке половины бит в строках, а затем вновь открыто сравнивают четности (Если строки различны, четности обязаны не совпадать с вероятностью 0,5). Если четности отличаются, отправитель и получатель производят двоичный поиск и удаляют неверные биты.
  • Если различий не наблюдается, после n итераций отправитель и получатель будут иметь одинаковые строки с вероятностью ошибки 2 -n .

Физическая реализация системы

Рассмотрим схему физической реализации квантовой криптографии . Слева находится отправитель, справа - получатель. Для того, чтобы передатчик имел возможность импульсно варьировать поляризацию квантового потока, а приёмник мог анализировать импульсы поляризации, используются ячейки Поккельса . Передатчиком формируется одно из четырёх возможных состояний поляризации. На ячейки данные поступают в виде управляющих сигналов. Для организации канала связи обычно используется волокно, а в качестве источника света берут лазер.

На стороне получателя после ячейки Поккельса расположена кальцитовая призма, которая должна расщеплять пучок на две составляющие, улавливаемые двумя фотодетекторами (ФЭУ), а те, в свою очередь, измеряют ортогональные составляющие поляризации. Вначале необходимо решить проблему интенсивности передаваемых импульсов квантов, возникающую при их формировании. Если в импульсе содержится 1000 квантов, существует вероятность того, что 100 из них будут отведены криптоаналитиком на свой приёмник. После чего, проводя анализ открытых переговоров, он сможет получить все необходимые ему данные. Из этого следует, что идеален вариант, когда в импульсе количество квантов стремится к одному. Тогда любая попытка перехватить часть квантов неизбежно изменит состояние всей системы и соответственно спровоцирует увеличение числа ошибок у получателя. В этой ситуации следует не рассматривать принятые данные, а заново повторить передачу. Однако, при попытках сделать канал более надёжным, чувствительность приёмника повышается до максимума, и перед специалистами встаёт проблема «темнового» шума. Это означает, что получатель принимает сигнал, который не был отправлен адресантом. Чтобы передача данных была надёжной, логические нули и единицы, из которых состоит двоичное представление передаваемого сообщения, представляются в виде не одного, а последовательности состояний, что позволяет исправлять одинарные и даже кратные ошибки.

Для дальнейшего увеличения отказоустойчивости квантовой криптосистемы используется эффект Эйнштейна - Подольского - Розена , возникающий в том случае, если сферическим атомом были излучены в противоположных направлениях два фотона. Начальная поляризация фотонов не определена, но в силу симметрии их поляризации всегда противоположны. Это определяет тот факт, что поляризацию фотонов можно узнать только после измерения. Криптосхема на основе эффекта Эйнштейна - Подольского - Розена, гарантирующая безопасность пересылки, была предложена Экертом. Отправителем генерируется несколько фотонных пар, после чего один фотон из каждой пары он откладывает себе, а второй пересылает адресату. Тогда если эффективность регистрации около единицы и на руках у отправителя фотон с поляризацией «1», то у получателя будет фотон с поляризацией «0» и наоборот. То есть легальные пользователи всегда имеют возможность получить одинаковые псевдослучайный последовательности. Но на практике оказывается, что эффективность регистрации и измерения поляризации фотона очень мала.

Практические реализации системы

В 1989 году Беннет и Брассар в Исследовательском центре IBM построили первую работающую квантово-криптографическую систему. Она состояла из квантового канала, содержащего передатчик Алисы на одном конце и приёмник Боба на другом, размещённые на оптической скамье длиной около метра в светонепроницаемом полутораметровом кожухе размером 0,5 × 0,5 м. Собственно квантовый канал представлял собой свободный воздушный канал длиной около 32 см. Макет управлялся от персонального компьютера , который содержал программное представление пользователей Алисы и Боба, а также злоумышленника. В том же году передача сообщения посредством потока фотонов через воздушную среду на расстояние 32 см с компьютера на компьютер завершилась успешно. Основная проблема при увеличении расстояния между приёмником и передатчиком - сохранение поляризации фотонов. На этом основана достоверность способа.

Созданная при участии Женевского университета компания GAP-Optique под руководством Николаса Гисина совмещает теоретические исследования с практической деятельностью. Первым результатом этих исследований стала реализация квантового канала связи с помощью оптоволоконного кабеля длинной 23 км, проложенного по дну озера и соединяющего Женеву и Нион. Тогда был сгенерирован секретный ключ, уровень ошибок которого не превышал 1,4 %. Но все-таки огромным недостатком этой схемы была чрезвычайно малая скорость передачи информации. Позже специалистам этой фирмы удалось передать ключ на расстояние 67 км из Женевы в Лозанну с помощью почти промышленного образца аппаратуры. Но и этот рекорд был побит корпорацией Mitsubishi Electric, передавшей квантовый ключ на расстояние 87 км, правда, на скорости в один байт в секунду.

Активные исследования в области квантовой криптографии ведут IBM, GAP-Optique, Mitsubishi , Toshiba , Национальная лаборатория в Лос-Аламосе , молодая компания MagiQ и холдинг QinetiQ , поддерживаемый британским министерством обороны. В частности, в национальной лаборатории Лос-Аламоса была разработана и начала широко эксплуатироваться опытная линия связи, длиной около 48 километров. Где на основе принципов квантовой криптографии происходит распределение ключей, и скорость распределения может достигать несколько десятков кбит/с.

В 2001 году Эндрю Шилдс и его коллеги из TREL и Кембриджского университета создали диод, способный испускать единичные фотоны. В основе нового светодиода лежит «квантовая точка » - миниатюрный кусочек полупроводникового материала диаметром 15 нм и толщиной 5 нм, который может при подаче на него тока захватывать лишь по одной паре электронов и дырок. Это дало возможность передавать поляризованные фотоны на большее расстояние. В ходе экспериментальной демонстрации удалось передать зашифрованные данные со скоростью 75 Кбит/с - при том, что более половины фотонов терялось.

В Оксфордском университете ставятся задачи повышения скорости передачи данных. Создаются квантово-криптографические схемы, в которых используются квантовые усилители. Их применение способствует преодолению ограничения скорости в квантовом канале и, как следствие, расширению области практического применения подобных систем.

Квантовый криптоанализ

Широкое распространение и развитие квантовой криптографии не могло не спровоцировать появление квантового криптоанализа, который в ряде случаев обладает, согласно теории, преимуществами перед обычным. Рассмотрим, например, всемирно известный и распространенный в наши дни алгоритм шифрования RSA (1977). В основе этого шифра лежит идея того, что на простых компьютерах невозможно решить задачу разложения очень большого числа на простые множители, ведь данная операция потребует астрономического времени и экспоненциально большого числа действий. Другие теоретико-числовые методы криптографии могут быть основаны на проблеме дискретного логарифмирования . Для решения этих двух проблем был разработан квантовый алгоритм Шора (1994), позволяющий найти за конечное и приемлемое время все простые множители больших чисел или решить задачу логарифмирования, и, как следствие, взломать шифры RSA и ECC . Поэтому создание достаточно крупной квантовой криптоаналитической системы является плохой новостью для RSA и некоторых других асимметричных систем. Необходимо только создание квантового компьютера, способного исполнить необходимый алгоритм.

По состоянию на 2012 год наиболее продвинутые квантовые компьютеры смогли разложить на множители числа 15 (в 150 тыс. попыток верный ответ был получен в половине случаев, в соответствии с алгоритмом Шора ) и 21.

Уязвимость реализаций квантовой системы

В 2010 году учёные успешно опробовали один из возможных способов атаки, показав принципиальную уязвимость двух реализаций криптографических систем, разработанных компаниями ID Quantique и MagiQ Technologies . И уже в 2011 году работоспособность метода была проверена в реальных условиях эксплуатации, на развёрнутой в Национальном университете Сингапура системе распространения ключей, которая связывает разные здания отрезком оптоволокна длиной в 290 м.

В эксперименте использовалась физическая уязвимость четырёх однофотонных детекторов (лавинных фотодиодов), установленных на стороне получателя (Боба). При нормальной работе фотодиода приход фотона вызывает образование электронно-дырочной пары, после чего возникает лавина, а результирующий выброс тока регистрируется компаратором и формирователем импульсов. Лавинный ток «подпитывается» зарядом, хранимым небольшой ёмкостью (≈ 1,2 пФ), и схеме, обнаружившей одиночный фотон, требуется некоторое время на восстановление (~ 1 мкс).

Если на фотодиод подавать такой поток излучения, когда полная перезарядка в коротких промежутках между отдельными фотонами будет невозможна, амплитуда импульса от одиночных квантов света может оказаться ниже порога срабатывания компаратора.

В условиях постоянной засветки лавинные фотодиоды переходят в «классический» режим работы и выдают фототок, пропорциональный мощности падающего излучения. Поступление на такой фотодиод светового импульса с достаточно большой мощностью, превышающей некое пороговое значение, вызовет выброс тока, имитирующий сигнал от одиночного фотона. Это и позволяет криптоаналитику (Еве) манипулировать результатами измерений, выполненных Бобом : она «ослепляет» все его детекторы с помощью лазерного диода, который работает в непрерывном режиме и испускает свет с круговой поляризацией, и по мере надобности добавляет к этому линейно поляризованные импульсы. При использовании четырёх разных лазерных диодов, отвечающих за все возможные типы поляризации (вертикальную, горизонтальную, ±45˚), Ева может искусственно генерировать сигнал в любом выбранном ею детекторе Боба .

Опыты показали, что схема взлома работает очень надёжно и даёт Еве прекрасную возможность получить точную копию ключа, переданного Бобу . Частота появления ошибок, обусловленных неидеальными параметрами оборудования, оставалась на уровне, который считается «безопасным».

Однако, устранить такую уязвимость системы распространения ключей довольно легко. Можно, к примеру, установить перед детекторами Боба источник одиночных фотонов и, включая его в случайные моменты времени, проверять, реагируют ли лавинные фотодиоды на отдельные кванты света.

Plug & Play

Практически все квантово-оптические криптографические системы сложны в управлении и с каждой стороны канала связи требуют постоянной подстройки. На выходе канала возникают беспорядочные колебания поляризации ввиду воздействия внешней среды и двойного лучепреломления в оптоволокне. Но недавно [когда? ] была сконструирована [кем? ] такая реализация системы, которую можно назвать Plug and Play («подключай и работай»). Для такой системы не нужна подстройка, а только синхронизация. Система построена на использовании зеркала Фарадея, которое позволяет избежать двойного лучепреломления и, как следствие, не требует регулировки поляризации. Это позволяет пересылать криптографические ключи по обычным телекоммуникационным системам связи. Для создания канала достаточно лишь подключить приёмный и передающий модули и провести синхронизацию.

Перспективы развития

Сейчас одним из самых важных достижений в области квантовой криптографии является то, что ученые смогли показать возможность передачи данных по квантовому каналу со скоростью до единиц Мбит/с. Это стало возможно благодаря технологии разделения каналов связи по длинам волн и их единовременного использования в общей среде. Что кстати позволяет одновременное использование как открытого, так и закрытого канала связи. Сейчас [ ] в одном оптическом волокне возможно создать около 50 каналов. Экспериментальные данные позволяют сделать прогноз на достижение лучших параметров в будущем:

  • достижение скорости передачи данных по квантовому каналу связи в 50 Мбит/с, при этом единовременные ошибки не должны будут превышать 4 %;
  • создание квантового канала связи длиной более 100 км;
  • организация десятков подканалов при разделении по длинам волн.

На данном этапе квантовая криптография только приближается к практическому уровню использования. Диапазон разработчиков новых технологий квантовой криптографии охватывает не только крупнейшие мировые институты, но и маленькие компании, только начинающие свою деятельность. И все они уже способны вывести свои проекты из лабораторий на рынок. Все это позволяет сказать, что рынок находится на начальной стадии формирования, когда в нём могут быть на равных представлены и те и другие.

, № 37, 2007 ;

  • Красавин В. «Квантовая криптография».
  • Румянцев К. Е. , Плёнкин А. П. Экспериментальные испытания телекоммуникационной сети с интегрированной системой квантового распределения ключей // Телекоммуникации. 2014. № 10. С. 11 − 16.
  • Плёнкин А. П. Использование квантовых ключей для шифрования сетевого соединения // Десятая ежегодная научная конференция студентов и аспирантов базовых кафедр Южного научного центра РАН: Тезисы докладов (г. Ростов-на-Дону, 14 − 29 апреля 2014 г.). - Ростов н/Д: Изд-во ЮНЦ РАН, 2014. - 410 с. - С. 81 − 82.
  • Плёнкин А. П. Использование квантового ключа для защиты телекоммуникационной сети // Технические науки - от теории к практике. 2013. № 28. - С. 54-58.
  • , Синхронизация системы квантового распределения ключа в режиме однофотонной регистрации импульсов для повышения защищенности. // Радиотехника. . - 2015. - № 2. - C. 125-134
  • Плёнкин А. П., Румянцев К. Е. , Синхронизация системы квантового распределения ключа при использовании фотонных импульсов для повышения защищённости // Известия ЮФУ. Технические науки. - 2014. - № 8, - № 157. - С. 81-96.
  • Румянцев К. Е., Плёнкин А. П. , Безопасность режима синхронизации системы квантового распределения ключей // Известия ЮФУ. Технические науки. - 2015. Т. № 5,- № 166. - С. 135-153.
  • Одним и, наверное, единственным практическим успехом квантовой информатики на сегодняшний день стало появление квантовой криптографии. В настоящий момент существуют и коммерчески доступны устройства квантовой криптографии, созданные на описанных ниже принципах.

    Задача криптографии заключается в защите от прослушивания сообщения при передаче его по незащищенному каналу. Решение заключается в том, что нужно предварительно обменяться секретными данными - ключом - и использовать его для передачи сообщения, применяя шифрование . Доказано, что такой подход может обеспечить абсолютную надежность при условии, что размер ключа не меньше размера самого передаваемого сообщения. Неудобство такого подхода очевидно, поэтому на практике применяется компромиссный метод, в котором ключ существенно меньше сообщения, но характер используемых криптопреобразований таков, что не существует алгоритма, позволяющего за приемлемое для взломщика время восстановить исходное сообщение из подслушанных им данных.

    Пространство квантовых состояний

    Квантовая система, находящаяся в состоянии А, изображается:

    В случае, если состояние A = 0, то кет-вектор обозначают как и говорят, что в данном случае квантовая система не существует.

    Представление системы в виде волновой функции эквивалентно представлению в виде вектора состояния , то есть:

    Множество кет-векторов образует комплексное векторное пространство (определено умножение векторов на комплексные числа).

    Следовательно, для любого комплексного числа α верно следующее утверждение:

    Произвольный вектор пространства может быть представлен как линейная комбинация базисных векторов:

    Суперпозиция квантовых состояний

    Пусть и - представления произвольной квантовой системы в виде волновых функций , тогда суперпозицией данных функций называется такая волновая функция , что:

    Для кет-векторов:

    Пусть и - представления произвольной квантовой системы в виде кет-векторов, тогда суперпозицией данных векторов называется такой кет-вектор , что:

    Сопряженное пространство

    Каждому кет-вектору сопоставим сопряженный ему бра-вектор

    Причем, если , то

    Множество бра-векторов образует сопряженное пространство состояний. Сопряженные пространства эквивалентны друг другу.

    Скалярное произведение

    Каждой паре векторов и по некоторому правилу сопоставим комплексное число - скалярное произведение

    Если состояния изображаются волновыми функциями, то

    Два вектора ортогональны, если

    В N-мерном прос-ве любая совокупность из N взаимно ортогональных векторов составляет линейно независимую систему и может использоваться в качестве (ортогонального) базиса. Такой базис называется ортонормированным, если нормирован каждый из базисных векторов. Набор векторов называют ортонормированным, если все вектора в нем единиичные и любые два различных вектора ортогональны, то есть для всех индексов i и j, причем

    Различение квантовых состояний

    Различимость квантовых состояний проще всего понять на примере игры с двумя участниками - Алисой и Бобом. Алиса выбирает состояние из некоторого фиксированного набора состояний, известного обоим участникам. Она передает состояние Бобу, цель которого - определить индекс i этого состояния.

    Предположим, что состояния образуют ортонормированный набор. Тогда Боб может различить эти состояния с помощью квантового измерения, операторы которого задаются следующим образом: - по одному на каждый индекс i, плюс, дополнительный оператор измерения M0, равный квадратному корню из неотрицательного определенного оператора I:

    Эти операторы удовлетворяют условию полноты , и если приготовлено состояние , то , то есть результат i получается с вероятностью 100%. Следовательно, можно с уверенностью утверждать, что можно различить ортонормированные состояния

    Напротив, если состояния не образуют ортонормированного набора, то можно доказать, что не существует квантового измерения, различающего эти состояния. Идея заключается в том, что Боб будет делать измерение, описываемое операторами Mj, дающими результаты j. В зависимости от результата измерения Боб пыатется угадать, какому индексу i соответствовало исходное состояние. Для этого он использует некоторое правило (функцию i = f(j)). Причина, по которой Боб не может различить неортогональные состояния и состоит в следующем: раскладывается в сумму компоненты, параллельной вектору , и компоненты, ортогональной вектору . Пусть j - такой результат измерения, что f(j) = 1, то есть Боб определяет, что сначала система была в состоянии , если он получает в качестве результата j. Но поскольку у вектора есть составляющая, параллельная вектору , существует ненулевая вероятность того, что результат j был получен и в том случае, когда исходным было состояние .

    Принципы безопасности квантового распределения ключа

    Принцип неопределенности Гейзенберга

    Безопасность основана на том, что если злоумышленник будет использовать несовпадающий базис, то состояние будет изменено.

    Принцип обнаружения подслушивающего

    Утверждение: при попытке различить два неортогональных квантовых состояния извлечение информации сопровождается возмущением сигнала.

    Пусть и - неортогональные квантовые состояния, о которых Ева пытается получить информацию. Тогда процесс, который Ева использует для получения, представляет собой унитарное взаимодействие состояния или с вспомогательной системой, приготовленной в стандартном состоянии . Допуская, что этот процесс не нарушает ни одно из состояний получаем

    Для Евы желательно, чтобы и были различными, с тем, чтобы она могла получить информацию о состоянии.

    Однако, поскольку скалярные произведения сохраняются при унитарных преобразованиях, должны выполняться следующие равенства

    откуда следует, что и должны совпадать. Таким образом, установление различия между и должно неизбежно нарушить, по меньшей мере, одно из этих состояний. Итак, проверяя переданные данные состояния на предмет нарушения, Алиса и Боб получают верхнюю оценку любого шума и подслушивания, которые имеют место в их канале связи.

    Теорема о невозможности клонирования квантовых состояний

    Предположим, что у нас есть квантовая машина с двумя слотами,

    обозначенными как А и Б. Слот А, слот данных, вначале находится в неизвестном, но чистом квантовом состоянии . Это то самое состояние, которое должно быть скопировано в слот Б, целевой слот.

    Предположим, что целевой слот изначально находится в некотором стандартном чистом состоянии . Следовательно, начальное состояние копирующего устройства имеет вид

    Некоторое унитарное преобразование U производит процедуру копирования, которая в идеальном виде выглядит так:

    Пусть данная процедура копирования выполняется для двух чистых состояний и . Тогда имеем,

    Взяв скалярное произведение этих двух уравнений получим:

    Но такое уравнение имеет только два решения: 0 и 1, поэтому либо = , либо и ортогональны. Следовательно, устройство копирования может копировать только те состояния, которые ортогональны друг другу и поэтому универсальное квантовое устройство копирования невозможно.

    Потенциальное квантовое устройство копирования не может, например, копировать кубитовые состояния = и , поскольку эти состояния не ортогональны.

    Принцип кодирования для протокола BB-84

    Алиса начинает с двух строк a и b, каждая из которых содержит случайных классических битов. Затем она кодирует эти строки блоком кубитов по формуле:

    где ak - k-тый бит a (и так же для b), а состояния задаются как

    Полученные состояния отправляются Бобу. Боб измеряет принимаемые фотоны в одном из двух базисов, выбираемых независимо от Алисы, затем изменяет каждый кубит в базисе случайным образом. Для каждого переданного состояния Боб открыто сообщает в каком базисе проводилось измерение кубита . Алиса открыто вообщает в каких случаях ее базис совпал с базисом Боба. Если базисы совпали - бит оставляют. Если нет - игнорируют. В таком случае ключ прорежается примерно на 50%. Такой ключ называется "просеянным". В итоге Боб и Алиса имеют (при условии отсутствия подслушивания и шумов в канале связи) полностью коррелироавнную строку случайных битов.

    В случае, если имело место прослушивание, по величине ошибки в канале связи Алиса и Боб могут оценить максимальное количество информации, доступное Еве. Считается, что в случае, если ошибка в канале не превышает 11%, то информация, доступная Еве, заведомо не превосходит взаимной информации между Алисой и Бобом, следовательно, передача данных возможна.

    Важно отметить, что канал связи между Алисой и Бобом не должен быть конфиденциальным, но обязан быть аутентифицированным. То есть любой злоумышленник может получать из него информацию, но не может изменять её.

    Квантовая криптография в применении к классической криптографии

    Алгоритм Шора

    Выберем q - степень двойки между и 2.

    Предположим, что r|q (простой случай). Тогда применим операцию Уолша-Адамара к первому регистру Получем:

    Вычислим mod n (тоже за логарифм):

    Пронаблюдаем второй регистр, получим mod n для случайного s < r, а в первом - суперпозиция s, r+s, 2r+s, ..., q-r+s:

    Снова применим операцию Уолша-Адамара:

    Сумма в скобках не равна нулю в случае, если частное rb и q - целое число, то есть ненулевая амплитуда будет только у чисел, делящихся на q/r.

    Пронаблюдав первый регистр получим случайное число вида cq/r. То есть с большой вероятностью (а точнее - порядка 1/(loglog(q)) c и r взаимно просты. Сократив получившуюся дробь получаем r.

    Сложный случай: r |/q На последнем шаге все равно будет дробь типа b/q, но:

    На интервале длины 1/q < 1/ будет не больше одной дроби со знаменателем меньше n. Эта дробь должна быть c/r.

    Этот же алгоритм подойдет и для дискретного логарифма, ведь на самом деле ищется период элемента x некоторой коммутативной группы.

    Если даны G = , n = |G| и y = , то можно найти период y (то есть такое минимальное r, для которого = 1 и сразу получится x = n/r.

    Следовательно, алгоритм Шора применим ко всем коммутативной криптографии.

    Алгоритм Гровера

    Пусть дана булева функция . Цель: найти хотя бы один корень уравнения f(x) = 1. На классическом компьютере, если f - произвольна нам понадобится O(N) операций, где , то есть, полный перебор. Если f в конъюнктивой нормальной форме - то данная задача является NP-полной.

    К сожалению, или к счастью, не известен квантовый(а классический тем более) для решения данной задачи за полиномиальное время. Но алгоритм Гровера позволяет получить квадратичное ускорение для полного перебора - за .

    Описание алгоритма:

    Используя n+1 кубит, мы приготавливаем первые n кубитов в суперпозицию всех возможных состояний, а последний в суперпозицию «нуля» и «единицы», но со «знаком минус» у «единицы». Тогда действуя раз оператором поворота, мы получаем состояние, при измерении которого с очень высокой вероятностью получаем решение уравнения.

    Применение алгоритма:

    Гроверовский «подскок амплитуды» является, по-видимому, фундаментальным физическим феноменом в квантовой теории многих тел. Например, его учет необходим для оценки вероятностей событий, которые кажутся «редкими». Процесс, реализующий схему GSA, приводит к взрывному росту первоначально пренебрежимо малой амплитуды, что способно быстро довести ее до реально наблюдаемых величин.

    Алгоритм Гровера также может быть использован для нахождения медианы и среднего арифметического числового ряда. Кроме того, он может применяться для решения NP-полных задач путем исчерпывающего поиска среди множества возможных решений. Это может повлечь значительный прирост скорости по сравнению с классическими алгоритмами, хотя и не предоставляя «полиномиального решения» в общем виде.

    Строго доказано, что время работы алгоритма Гровера для поиска информации в неупорядоченной базе данных равно корню квадратному от того времени, что необходимо для аналогичного поиска компьютеру классическому. Но, более того, квадратный корень – это вообще наилучший результат, который может быть теоретически достигнут.

    Квантовые компьютеры

    История развития квантовых компьютеров

    Исследователям из Массачусетского технологического института удалось впервые распределить один кубит между тремя ядерными спинами в каждой молекуле жидкого аланина или молекулы трихлороэтилена. Такое распределение позволило использовать «запутанность» для неразрушающего анализа квантовой информации.

    В марте ученые из Национальной лаборатории в Лос Аламосе объявили о создании 7-кубитного квантового компьютера в одной единственной капле жидкости.

    Демонстрация вычисления алгоритма Шора специалистами из IBM и Стэнфордского университета на 7-кубитном квантовом компьютере.

    В институте квантовой оптики и квантовой информации при Иннсбрукском университете впервые удалось создать кубайт (сочетание 8 кубитов) с помощью ионных ловушек.

    Канадская компания D-Wave продемонстрировала первый 16-кубитный квантовый компьютер, способный решать целый ряд задач и головоломок, типа судоку.

    С 2011 года D-Wave предлагает за $11 млн долларов квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу – дискретную оптимизацию.

    Современные квантовые компьютеры

    MagicQ

    Основана в 1999 году в США для целей армии США и флота, NASA, DARPA, JTRS. В 2004 году на основе устройств Magic QPN 8505 в DARPA была создана первая в мире сеть с использованием квантовых технологий.

    Квантовый канал объединил три ВУЗа, принимавших участие в разработке.

    id Quantique

    Компьютеры D-Wave

    Компания D-Wave представила компьютерную систему, построенную на основе принципиально нового вида процессора. Система называется D-Wave One.

    Процессор D-Wave One (кодовое имя Rainier) разработан для выполнение одной единственной математической операции - дискретной оптимизации. Это процессор специального назначения. В процессе разработки приложений D-Wave One используется только в тех частях программы, которые непосредственно решают задачу оптимизации. Остальные части приложения работают на традиционных системах.

    Rainer решает задачу оптимизации используя квантовый отжиг (quantum annealing, QA), который относится к классу методов, основанных на использовании квантовых эффекты для поиска оптимального решения в кратчайшее время. Так как D-Wave One является квантовым компьютером, многие склонны думать, что разработка приложений для такой системы может быть действительно сложным делом. Основная сложность возникает из за необходимости объединить знания из областей, которые обычно не пересекаются, таких как квантовая физика и машинное обучение.

    Проблемы перехода на квантовые компьютеры

    Стоимость

    Канадская компания D-Wave выпустила в продажу «первый в мире доступный коммерческий квантовый компьютер». Его цена составила 10 миллионов долларов, сообщает техноблог Engadget. Этот компьютер в состоянии оперировать 129 кубитами. Считается, что для решения некоторых практических задач, такого количества простых квантовых ячеек памяти, которые связаны между собой в единую систему, может оказаться вполне достаточно.

    Изучение находится на раннем этапе

    Серия тестов показала, что квантовый компьютер D-Wave, описанный выше, не дает никакого выигрыша в скорости по сравнению с компьютерами обычными, классическими. Попросту говоря, не только ученые, тестирующие D-Wave, пока не смогли увидеть ни одной реальной задачи, где квантовый компьютер мог бы убедительно продемонстрировать свое вычислительное превосходство, но даже сама компания-изготовитель понятия не имеет, что это может быть за задача.

    Необходимость ограниченному числу пользователей

    По мнению д-ра Питера Шора, несмотря на свою потенциальную мощь, квантовые компьютеры вовсе не обязательно будут выполнять все задачи быстрее классических компьютеров. В действительности, по его оценкам, работоспособный квантовый компьютер каждую из операций будет выполнять даже медленнее, чем компьютер обычный. И лишь для некоторых проблем, там, где исследователи обнаружили методы эффективного использования возможностей столь гигантских объемов хранимой информации, научившись выделять нужный ответ за сравнительно небольшое количество шагов (намного меньшее, чем в классических компьютерах) – появляется возможность существенно ускорить вычисления.

    Сложность управления и обслуживания

    Даже одна случайная молекула воздуха или другой малейший "шум" в системе способны выбивать кубиты из когерентной сцепленности.

    Ошибки в ходе вычислений

    Еще одна огромная трудность – это исправление ошибок, неизбежно возникающих в процессе вычислений. В столь тонком устройстве хранимые состояния могут непреднамеренно воздействовать друг на друга, в результате чего операции могут применяться не к тем квантовым битам.

    Ограничения квантовой криптографии

    • Требуется обязательное наличие выделенной линии вследствие ряда факторов:
      • Квадратичное возрастание линий с возрастанием числа пользователей.
      • Оптическая линия связи БЕЗ оптических усилителей.

    Список литературы

    Перейти к списку литературы по разделу "Квантовая криптография".

    Андрюхин Б9-04 Покидова Б9-04

    Квантовые компьютеры и связанные с ними технологии в последнее время становятся все актуальнее. Исследования в этой области не прекращаются вот уже десятилетия, и ряд революционных достижений налицо. Квантовая криптография - одно из них.
    Владимир Красавин «Квантовая криптография»

    Данная статья является прологом к циклу статей и переводов по теме Квантовая криптография.

    Действительно в последнее время все чаще мы слышим такие понятия как «Квантовый компьютер», «Квантовые вычисления» и конечно же «Квантовая криптография».

    И если с первыми двумя понятиями в принципе всё понятно, то «Квантовая криптография» - понятие, которое хоть и имеет точную формулировку, до сих пор остается для большинства людей темным и не совсем понятным этакий Ёжик в тумане.

    Но прежде чем непосредственно перейти к разбору данной темы введем базовые понятия:

    Криптография – наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.

    Квантовая физика – раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.

    Квантовая криптография – метод защиты коммуникаций, основанный на принципах квантовой физики. В отличие от традиционной криптографии, которая использует математические методы, чтобы обеспечить секретность информации, квантовая криптография сосредоточена на физике, рассматривая случаи, когда информация переносится с помощью объектов квантовой механики.

    Ортогональность – понятие, являющееся обобщением перпендикулярности для линейных пространств с введённым скалярным произведением.

    Quantum Bit Error Rate (QBER) – уровень квантовых ошибок.


    Квантовая криптография – направление молодое, но медленно развивающиеся в силу своей необычности и сложности. С формальной точки зрения это не есть криптография в полном понимании этого слова, так как базируется она не столько на математических моделях, сколько на физики квантовых частиц.

    Главной её особенностью, а заодно и особенностью любой квантовой системы является невозможность вскрытия состояние системы на протяжении времени, так при первом же измерении система меняет свое состояние на одно из возможных неортогональных значений. Помимо всего прочего существует «Теорема о запрете клонирования» сформулированная в 1982 году Вуттерсом, Зуреком и Диэксом, которая говорит о невозможности создания идеальной копии произвольного неизвестного квантового состояния, хотя и существует лазейка, а именно - создание неточной копии. Для этого нужно привести исходную систему во взаимодействие с большей вспомогательной системой и провести унитарное преобразование общей системы, в результате которого несколько компонентов большей системы станут приблизительными копиями исходной.

    Основы передачи данных

    Дабы не приводить сложных и не всем понятных схем, прибегну к помеси физики и геометрии.

    В качестве носителей информации, чаще всего, используются одиночные или парные связанные фотоны. Значения 0/1 кодируются различными направлениями поляризации фотонов. При передаче используются случайно выбранный 1 из двух или трех неортогональных базисов. Соответственно правильно обработать входной сигнал возможно только если получатель смог подобрать правильный базис, в противном случае исход измерения считается неопределенным.

    Если же хакер попытается получить доступ к квантовому каналу, по которому происходит передача, то он, как и получатель будет ошибаться в выборе базиса. Что приведет к искажению данных, которое будет обнаружено обменивающимися сторонами при проверке, по некому выработанному тексту, о котором они договорились заранее, например, при личной встрече или по зашифрованному, методами классической криптографии, каналу.

    Ожидание и Реальность

    При использовании идеальной системы перехват данных невозможен, так как моментально обнаруживается участниками обмена. Однако при обращении к реальным системам все становится намного прозаичней.

    Появляются две особенности:

    • Существует возможность неправильно переданных битов, в силу того, что процесс носит вероятностный характер.
    • Так как главная особенность системы – это использование импульсов с низкой энергией, это сильно снижает скорость передачи данных.
    Теперь немного подробней о данных особенностях.

    Неправильные, или точнее говоря искаженные биты могут возникать по двум основным причинам. Первая причина это я, несовершенность оборудования используемого при передаче данных, вторая причина - это вмешательство криптоаналитика или хакера.
    Решение первой причины очевидно Quantum Bit Error Rate.

    Quantum Bit Error Rate представляет собой уровень квантовых ошибок, который вычисляется по довольно замысловатой формуле:

    QBER= «p_f+(p_d*n*q*∑(f_r* t_l) /2)*μ»

    Где:

    p_f: вероятность неправильного «щелчка» (1-2%)
    p_d: вероятность неправильного сигнала фотона:
    n: количество обнаружений
    q: фаза= 1/2; поляризация = 1
    Σ: detector efficiency
    f_r: частота повторения
    p_l: скорость передачи данных (чем больше расстояние, тем меньше)
    µ: затухание для световых импульсов.


    Говоря о второй особенности стоит упомянуть, что во всех системах присутствует затухание сигнала. И, если в используемых ныне способах передачи данных эта проблема решается за счет различных способов усиления. То в случае с квантовым каналом на данный момент максимальна достигнутая скорость 75 Кбит/с, но уровень потерянных фотонов почти достиг 50%. Хотя справедливость ради скажу, что по известным данным минимальные потери при передаче составляют 0,5% на скорости всего лишь 5 кбит/с.

    Таким образом можно сделать следующие выводы:

    1. Хоть в идеале защищенный методами Квантовой криптографии канал взломать практически невозможно, по крайней мере известными на данный момент способами, на практике следуя правилу, что стойкость системы определяется стойкостью самого слабого её звена, мы убеждаемся в обратном;
    2. Квантовая криптография развивается, причем довольно-таки быстро, но к сожалению практика не всегда поспевает за теорией. И как следствие вытекает третий вывод;
    3. Созданные на данный момент системы использующие такие протоколы как BB84, B92 подвержены атакам, и по своей сути не обеспечивают достаточной стойкости.
    Конечно Вы скажете:

    Но как же так есть ведь протоколы E91 и Lo05. И он принципиально отличается от BB84, B92.
    - Да, и все же есть одно, НО…

    Но об этом в следующей статье.

    Представьте себе, что прежде чем отправить электронное письмо приятелю, вы должны достать карту, измерить расстояние до города, где он живет, и если окажется, что это расстояние больше, чем 100 км, вы со вздохом берете карандаш и бумагу и беретесь за обычное «бумажное» письмо — электронная почта дальше, чем на 100 км, не ходит.

    Абсурдная ситуация? Но именно так сейчас обстоят дела с передачей квантовых данных по оптоволоконным линиям связи — рекордная дальность передачи здесь до сих пор лишь немного превышает сотню километров, а устойчивая работа на нормальных, не рекордных линиях вообще ограничивается 40 км. Это означает, например, что линию квантовой коммуникации можно организовать внутри Москвы, а вот о передаче данных в Петербург пока нечего и думать. Каковы же перспективы квантовой криптографии в области дальней связи?

    Вскрытие на слух

    Первый успешный эксперимент по квантовой передаче данных был проведен Беннетом и Жилем Брассаром в конце октября 1989 года, когда защищенная квантовая связь была установлена на расстоянии 32,5 см. Установка меняла поляризацию фотонов, но при этом блок питания шумел по‑разному в зависимости от того, какой была поляризация. Таким образом, окружающие могли свободно различать нули и единицы на слух. Как пишет Брассар, «наш прототип был защищен от любого подслушивающего, который оказался бы глухим». В октябре 2007 года методы квантовой криптографии были впервые применены в широкомасштабном проекте. Система квантовой защищенной связи, разработанная швейцарской компанией Id Quantique, использовалась для передачи данных о результатах голосования на парламентских выборах в швейцарском кантоне Женева. Таким образом, голоса швейцарцев были защищены как никакая другая информация.

    Банкноты и блокноты

    История квантовой криптографии началась еще в конце 1960-х годов, когда студент Колумбийского университета Стивен Визнер изложил своему бывшему сокурснику Чарльзу Беннету идею квантовых банкнот, которые в принципе нельзя подделать, поскольку это исключают законы природы. Суть идеи состояла в том, чтобы поместить на каждую банкноту несколько квантовых объектов. Это могут быть, например, ловушки с фотонами, каждый из которых поляризован под определенным углом в одном из двух базисов — либо под углом 0 и 90, либо 45 и 135 градусов. Серийный номер напечатан на банкноте, но соответствующая номеру комбинация поляризаций и базисов (фильтров, с помощью которых фотону придается или измеряется его поляризация) при этом известна только банку. Чтобы подделать такую банкноту, фальшивомонетчик должен измерить поляризацию каждого фотона, но он не знает, в каком базисе поляризован каждый из них. Если он ошибется с базисом, то поляризация фотона изменится, и поддельная банкнота будет с неверной поляризацией. Квантовые деньги до сих пор не появились, поскольку пока не удалось создать достаточно надежных ловушек для фотонов. Однако тогда же Визнер предложил использовать тот же самый принцип для защиты информации, и эта технология сейчас уже близка к реализации.


    Первый протокол квантового распределения ключей был создан Жилем Брассаром и Чарльзом Беннетом в 1984 году и получил название BB84. Для передачи данных используются фотоны, поляризованные в четырех разных направлениях, в двух базисах — под углом 0 и 90 градусов (обозначается знаком +) либо 45 и 135 градусов (x). Отправитель сообщения A (традиционно его называют «Алиса») поляризует каждый фотон в случайно выбранном базисе, а затем отправляет его получателю B — «Бобу». Боб измеряет каждый фотон, тоже в случайно выбранном базисе. После этого Алиса по открытому каналу сообщает Бобу последовательность своих базисов, и Боб отбрасывает неправильные (не совпавшие) базисы и сообщает Алисе, какие данные «не прошли». При этом сами значения, полученные в результате измерений, они по открытому каналу не обсуждают. Если шпион (его обычно называют «Евой», от английского eavesdropping — подслушивание) захочет перехватить секретный ключ, он должен будет измерять поляризацию фотонов. Поскольку он не знает базиса, он должен будет определять его случайным образом. Если базис будет определен неправильно, то Ева не получит верных данных, а кроме того, изменит поляризацию фотона. Появившиеся ошибки сразу обнаружат и Алиса, и Боб.

    Идеи Визнера, однако, были признаны далеко не сразу. Еще в начале 1970-х годов Визнер отправил свою статью о квантовой криптографии в журнал IEEE Transactions on Information Theory, но редакторам и рецензентам язык статьи показался слишком сложным. Лишь в 1983 году эта статья увидела свет в журнале ACM Newsletter Sigact News, и именно она стала первой в истории публикацией об основах квантовой криптографии.

    Первоначально Визнер и Беннет рассматривали вариант передачи зашифрованных сообщений с помощью квантовых «носителей», при этом подслушивание портило бы сообщение и не давало возможности его прочесть. Затем они пришли к улучшенному варианту — использованию квантовых каналов для передачи одноразовых «шифроблокнотов» — шифровальных ключей.


    Закрытый конверт

    Квантовые системы связи основаны на использовании квантовых свойств носителей информации. Если в обычных телекоммуникационных сетях данные кодируются в амплитуде и частоте излучения или электрических колебаний, то в квантовых — в амплитуде электромагнитного поля или в поляризации фотонов. Разумеется, потребуется значительно более дорогая и сложная аппаратура, но эти ухищрения оправданны: дело в том, что передача информации по квантовым каналам обеспечивает стопроцентную защиту от «прослушки». Согласно законам квантовой механики измерение свойств того или иного квантового объекта, например измерение поляризации фотона, неминуемо меняет его состояние. Получатель увидит, что состояние фотонов изменилось, и предотвратить это нельзя в принципе — таковы фундаментальные законы природы. Это можно описать такой аналогией: представьте себе, что вы пересылаете письмо в закрытом конверте. Если кто-то откроет письмо и прочитает его, цвет бумаги изменится, и получатель неминуемо поймет, что послание читал кто-то третий.

    Самая ценная информация — это шифровальные ключи. Если ключ имеет длину, равную самому сообщению или еще длиннее, то расшифровать послание, не зная ключа, в принципе невозможно. Остается организовать защищенную передачу ключей, а это как раз и обеспечивают квантовые линии связи. Однако пока дистанция передачи данных для таких линий слишком коротка: из-за тепловых шумов, потерь, дефектов в оптоволокне фотоны не «выживают» на больших расстояниях.

    Самая ценная информация — шифровальные ключи. Если ключ имеет длину, равную самому сообщению или еще длиннее, то расшифровать послание, не зная ключа, невозможно.

    Квантовые ключи

    Множество исследовательских групп по всему миру разрабатывают устройства «восстановления» квантовых данных — так называемые квантовые повторители, которые способны «оживлять» фотоны. Группа исследователей из Российского квантового центра под руководством профессора Александра Львовского нашла способ восстанавливать свойства фотонов и подтвердила в эксперименте работоспособность этого метода. Ученые занимались изучением феномена квантовой запутанности, при котором состояния двух или нескольких объектов — атомов, фотонов, ионов — оказываются связаны. Если состояние одного из пары запутанных фотонов измерить, то состояние второго немедленно станет определенным, причем состояния их обоих будут связаны однозначно — например, если один фотон окажется поляризован вертикально, то второй — горизонтально и наоборот.


    «Если распределять пары запутанных фотонов между двумя удаленными партнерами, то они оба получают одну и ту же последовательность, которую можно использовать как шифровальный ключ, поскольку это истинно случайная последовательность, которую нельзя угадать или рассчитать. Если же кто-то попытается подсмотреть запутанные фотоны, корреляция между ними потеряется и из них больше нельзя будет извлечь ключ», — объясняет Александр Львовский.

    Задача состоит в том, чтобы сохранить состояние квантовой запутанности при передаче на большие расстояния. До сих пор с этим возникали большие проблемы. По оптоволоконным сетям до сих пор не удавалось передавать запутанные фотоны на расстояние больше 100 км. На больших расстояниях квантовые данные просто теряются в шумах. В обычных телекоммуникационных сетях используют разные типы повторителей или усилителей сигнала, которые усиливают амплитуду сигнала и убирают шумы, но в случае с квантовыми данными этот подход не работает. Фотон нельзя «усилить», при попытке измерить его параметры состояние фотона изменится, а значит, все преимущества квантовой криптографии исчезают.

    Квантовые повторители

    Ученые из разных стран пытаются разработать технологию квантовых повторителей — устройств, способных «воссоздавать» квантовую информацию, не разрушая ее. Группа Львовского, кажется, нащупала путь, который может привести к успеху. Еще в 2002 году он и его коллеги обнаружили любопытный эффект, который был назван «квантовым катализом», по аналогии с химическим термином, где определенные реакции могут идти только в присутствии особого вещества — катализатора. В их эксперименте световой импульс смешивался со «вспомогательным» одиночным фотоном на частично пропускающем свет зеркале. Затем этот фотон «удаляли». Казалось бы, состояние светового импульса не должно было меняться. Но, в силу парадоксальных свойств квантовой интерференции, фотон менял его в сторону «усиления» квантовых свойств.

    «В то время это явление выглядело не более чем курьезным феноменом, каковых в квантовой физике множество. Теперь же оказалось, что оно имеет важное практическое применение — позволяет восстановить запутанность квантовых состояний света», — говорит Александр Львовский.


    В своей новой работе, отчет о которой был опубликован в журнале Nature Photonics, ученые научились заново запутывать «распутавшиеся» фотоны. В качестве источника запутанных фотонов в эксперименте они использовали нелинейный кристалл титанил-фосфата калия с периодической доменной структурой. Его «обстреливали» пикосекундными импульсами света, которые генерировал титан-сапфировый лазер. В результате в кристалле рождались запутанные пары фотонов, которые ученые отправляли в два разных оптических канала. В одном из них свет подвергался 20-кратному ослаблению с помощью затемненного стекла, в результате чего уровень запутанности падал почти до нуля. Это соответствует уровню потерь в 65 км обычного оптоволоконного кабеля. Затем ослабленный сигнал направляли на светоделитель, где и проходил процесс квантового катализа. Ученые из группы Львовского называют этот процесс «квантовой дистилляцией», поскольку на выходе остается меньше фотонов, зато их уровень запутанности возрастает почти до исходного. «Из миллиона слабо запутанных пар фотонов получается одна сильно запутанная. Но при этом уровень корреляции восстанавливается до первичной, и хотя скорость передачи данных несколько снижается, мы можем получить устойчивую связь на значительно большем расстоянии», — говорит коллега Львовского Александр Уланов.


    Не только для шпионов

    На основе этой технологии можно будет создавать квантовые повторители, пригодные для коммерческого использования. «Для этого есть и другие методы, но как их использовать в условиях существующих источников квантовой запутанности, непонятно. Это оказывается непропорционально дорого. Возможно, наш повторитель будет и проще, и дешевле», — говорит Львовский. По его мнению, при благоприятных условиях первый прототип такого повторителя может быть создан через четыре-пять лет. А появление его на рынке может открыть дорогу действительно массовому применению квантовой криптографии, что серьезно изменит жизнь не только военных или банкиров.

    «Это касается каждого из нас. Квантовая криптография — это не только какие-то военные или шпионские секреты, это номера кредитных карточек, это истории болезни. У каждого из нас масса конфиденциальной информации, и чем более открытым становится мир, тем важнее для нас контролировать доступ к ней», — говорит Львовский. Использование квантовых методов передачи шифровальных ключей может серьезно ослож­нить жизнь злоумышленников, у которых теперь не будет возможности перехватить и расшифровать информацию.


    © 2024
    reaestate.ru - Недвижимость - юридический справочник