14.07.2019

Твердость измеряется в единицах. Большая энциклопедия нефти и газа. Твердость металла. Определение твердости металла. Метод Бринелля, Роквелла


Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:

  • износостойкость металла;
  • возможность обработки резанием, шлифованием;
  • сопротивляемость местному давлению;
  • способность резать другой материал и прочие.

На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.

Понятие твердости

Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).

Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.

После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.

В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.

Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.

Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.

  • вдавливанием;
  • царапанием;
  • резанием;
  • отскоком.

Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.

На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.

Единицы измерения твердости

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

Н □ 0,195 = 2800, где

□ — форма наконечника;

2800 – численное значение твердости, Н/мм 2 .

Твердость основных металлов и сплавов

Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.

Цветные металлы

Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.

Черные металлы

Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.

Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.

HB HV HRC HRA HSD
228 240 20 60.7 36
260 275 24 62.5 40
280 295 29 65 44
320 340 34.5 67.5 49
360 380 39 70 54
415 440 44.5 73 61
450 480 47 74.5 64
480 520 50 76 68
500 540 52 77 73
535 580 54 78 78

Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D 2 -d 2),

  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.
    Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:
    сплавы из железа — 30D 2 ;
    медь и ее сплавы — 10D 2 ;
    баббиты, свинцовые бронзы — 2,5D 2 .

Скачать ГОСТ 9012-59

Твердость характеризует сопротивление материала проникновению в него более твердого тела (например, при вдавливании или царапании). Твердость связана с прочностью материала и в определенной степени характеризует его сопротивление износу.

Твердость обычно характеризуют числом твердости . Для пластичных материалов (металлов и сплавов), тканей зуба число твердости определяется как отношение нагрузки F , действующей на вдавливаемое тело (индентор), к площади S поверхности отпечатка, образовавшегося в материале после снятия нагрузки.

Методы измерения твердости различаются между собой формой индентора и материалом, из которого он сделан. Например, при определении твердости методом Бринелля в образец вдавливается стальной шарик, а методом Виккерса и Кнуппа – алмазная пирамидка.

Обозначения твердости : Н B (или НВ ) – твердость по Бринеллю, Н V (или HV ) – твердость по Виккерсу, Н К (или ) – твердость по Кнуппу.

Метод Бринелля используется в стоматологической практике для определения макротвёрдости металлов и их сплавов. В данном случае в испытуемый образец под действием нагрузки (Р ) в течение определённого времени вдавливается металлический шарик. После снятия нагрузки на поверхности образца остается сферический отпечаток площадью S и диаметром М (рис. 8). Величина отпечатка зависит от твёрдости металла: чем он твёрже, тем меньше величина отпечатка.

Рис. 8 Схематичное представление испытания материала на твердость по методу Бринеля

Число твердости по Бринеллю обозначается НВ и определяется по формуле: или

где D –диаметр шарика; М – диаметр отпечатка;

В случае определения твёрдости НВ шариком с D = 10 мм при нагрузке Р = 3000 кгс и времени выдержки t = 10 с число твёрдости записывают так: НВ 400, НВ 250, НВ 500 и т.д. При использовании других условий испытания индекс НВ дополняют цифрами, указывающими диаметр использованного шарика (мм), нагрузку (кгс) и продолжительность выдержки (с). Например, НВ 5/750/30-350 – это число твёрдости по Бринеллю (350 кгс/мм 2), полученное при вдавливании шарика с D = 5мм нагрузкой Р = 750кгс, в течении t = 30 c.

Основными современными способами определения твёрдости следует считатьметод Виккерса и его усовершенствованный вариант - метод Кнуппа .

При измерении твёрдости по методу Виккерса в поверхность испытуемого образца или изделия вдавливают алмаз в форме пирамиды, в основании которой лежит квадрат с углом между противоположными гранями 136°.

Рис. 9 Схематическое представление испытания на твердость по методу Виккерса

Число твердости по Виккерсу (HV ), вычисляют по формуле:

HV = 1,854 - среднее арифметическое длин обеих диагоналей отпечатка, мм.

При испытаниях применяют нагрузки от 50 до 1000 Н (от 5 до 100 кгс). Обычными условиями испытания считаются: нагрузка 300 Н (30 кгс) и время выдержки 10 – 15с. В этом случае твёрдость по Виккерсу записывается, например HV 400, т.е. она равна 400 кгс/мм 2 . Если условия испытания другие, то это отражается цифрами, причём сначала указывается величина нагрузки, потом – время выдержки. К примеру, запись HV 20/40 – 250 означает, что при нагрузке 200 Н (20 кгс) и времени выдержки 40 с, твёрдость по Виккерсу равна 250 кгс/мм 2 .

Для оценки твёрдости в малых объёмах, например, на зёрнах металла и его структурных составляющих применяют способ измерения микротвердости по Виккерсу , где в качестве индентора используется пирамида Виккерса. Нагрузка на индентор в этом случае невелика 0,05–5Н (0,005 – 0,5кгс), а размер отпечатка 5–30мкм. Ценность данного метода состоит и в том, что при его использовании вследствие малых нагрузок вдавливания удается испытывать очень тонкие и хрупкие образцы, определять твёрдость тонких поверхностных слоев материала и различных фаз, входящих в его состав. Поэтому метод можно использовать также для определения твёрдости структур, форми­рующих зуб. Важно и то, что, в отличие от метода Бринелля, метод Виккерса позволяет определить твёрдость мелких готовых изделий, не разрушая и не портя их вследствие малой величины отпечатка.

При определении твердости по методу Кнуппа используется алмазный индентор в виде ромбической пирамиды. При этом создается отпечаток в виде ромба, в котором одна диагональ в 7 раз длиннее другой.

Число твёрдости, определённое по методу Кнуппа (НК ) определяется по формуле:

HK =12,87 ,

- величина длинной диагонали, мм.

Метод Кнуппа наиболее универсален, так как позволяет измерять твёрдость зубной эмали, дентина, металлических сплавов, золота, фарфора, резины и т.д.

В основе метода Мооса лежит использование шкалы Мооса – десятибалльной шкала твёрдости материалов, предложенной немецким минерологом Ф. Моосом. В этой шкале за эталоны приняты твёрдости следующих 10 материалов, начиная с наиболее мягкого: талька – принята за 1, гипса – 2, кальция – 3, флюорита – 4, апатита – 5, ортоклаза – 6, кварца – 7, топаза – 8, корунда – 9, алмаза – 10. Для определения твёрдости и места в шкале Мооса какого-либо материала его пробуют царапаньем: он будет мягче того минерала, который оставляет на нём царапину и тверже того, на котором он сам оставляет черту.

Твердость измеряется в СИ в H/м 2 = Па или для больших значений в МПа, ГПа (1 Па = 10 –9 ГПа = 10 –6 МПа). Однако на практике часто используют внесистемные единицы, в первую очередь, кгс/мм 2:

1 кгс (килограмм-сила) = 1кг × 9,81 м/с 2 ≈ 10 кг×м/с 2 = 10 Н;

1 кгс/мм 2 ≈ 10 Н/мм 2 = 10 7 Н/м 2 = 10 МПа.

Твердость – свойство материала сопротивляться проникновению в него другого, более твердого тела, например инструмента. От твердости зависит область применения материалов, поведение их в процессе эксплуатации и сохранение внешнего вида. По этой характеристике оценивают качество металлов, пластических масс, керамики, древесины, каменных и других материалов.

Она существенно влияет на характер и трудоемкость обработки материала.

Существует несколько способов определения твердости материалов: царапание, вдавливание, прокол стандартной иглой, испытания с помощью бойка и колебаний маятника. Все они основаны на внедрении в испытываемый образец минерала, шарика, пирамиды, пуансона под определенным давлением: чем меньше усилие и больше глубина внедрения, тем ниже твердость материала, и наоборот.

Наиболее простым и распространенным на практике способом определения твердости природных каменных материалов является царапание их другими минералами шкалы твердости. Предложенная в прошлом столетии немецким ученым Ф. Моосом указанная шкала содержит 10 минералов от самого мягкого (талька) до самого твердого (алмаза), причем порядковый номер минерала в шкале соответствует его твердости и каждый следующий по порядку минерал оставляет черту (царапину) на предыдущем, а сам им не прочерчивается (см. табл. 3).

Твердость других материалов определяют различными способами, обычно на специальных приборах. Твердость металлов, бетона, древесины и пластмасс (кроме пористых) оценивают, вдавливая в образцы стальной шарик или алмазный конус. О величине твердости судят либо по глубине вдавливания шарика или конуса, либо по диаметру полученного отпечатка.

Числовыми характеристиками твердости материалов служат числа твердости, которые сведены в различные шкалы, соответствующие разным методам ее измерения. Числа твердости указываются в единицах HB (метод Бринелля), HV (метод Виккерса), HR (метод Роквелла), где H – первая буква английского слова харднесс – твердость.

При определении твердости методом Роквелла вводятся дополнительные обозначения: В (шарик), С и А (конус, при разных грузах). Поясним сказанное на примере определения твердости металлов: для незакаленных деталей применяют стальной закаленный шарик и груз массой 100 кг, твердость отсчитывают по красной шкале В и обозначают HRB для закаленных деталей высокой твердости используют алмазный конус и груз массой 150 кг, твердость отсчитывают по черной шкале С и обозначают HRC; для особо твердых или тонких, деталей применяют также алмазный конус, но груз 60 кг, твердость отсчитывают по шкале А специального прибора и обозначают HRA.

Следует отметить, что твердость материала не всегда соответствует его прочности. Например, древесина, значительно уступая бетону по твердости, имеет одинаковую с ним прочность.

Для корректной работы запчастей и прочих деталей, надо соблюдать все необходимые параметры изготовления. Именно в связи с этим процесс контроля так важен при производстве. У железных комплектующих существует много важных параметров, таких как вязкость, прочность или пластичность.

В статье мы поговорим о самом важном процессе – определении твердости металлов, расскажем про методы измерения и предложим таблицу для наглядности.

Понятие

Твердость заготовки – особенность материала, благодаря которой железо создает сопротивление при контакте или проникновении в его слои инородного объекта или тела. Оно не должно подвергаться деформации или разрушению при определенных нагрузках.

Данный параметр служит для следующих целей:

    Контроль состояния металла по времени.

    Добыча информации, касательно минимальных и максимальных допустимых значениях заготовки.

    Анализ результатов обработки с применением высоких температур.

Данный критерий показывает, как деталь проявит себя в дальнейшем использовании, а также какой у нее срок годности. Для проведения исследований используется как необработанные элементы, так и готовые запчасти.

Как определить твердость металла: методы

Для его измерения существует много способов. Для получения наиболее точного результата используют сразу несколько методик. Ознакомимся с ними поближе:

    по Бринеллю. Данное исследование заключается в том, что в заготовку вдавливается специальный шарик. После этого, по оставшемуся на железе следу, с помощью математических алгоритмов вычисляют его механический коэффициент.

    по Роквеллу. В данном случае также используется шарик или алмазный конус. Параметр определяется с помощью расчетов или выводится на шкалу.

    по Виккерсу. Данный способ является наиболее аккуратным и точным методом измерения. Для проведения исследований используется пирамидообразный наконечник, выполненный из алмаза.

Единицы измерения твердости металла: какой способ выбрать

При проведении тестов в лаборатории, необходимая методика подбирается в зависимости от характеристик и свойств детали. К таким относят:

    Размер заготовки. Если образец слишком маленький или тонкий, для вычисления необходимого коэффициента используют метод Виккерса.

    Приблизительное значение прочности. В зависимости от используемого материала и его количества принято использовать разные способы. Так например, твердость металла по Бринеллю и Роквеллу вычисляется, если заготовка выполнена из материалов с небольшой твердостью или из легированной стали и прочих сплавов.

    Толщина заготовки. Один из главных факторов – ширина детали в месте проведения замера. Зачастую данный фактор относится к цементным и азотным слоям.

Также отметим, что все необходимые параметры задокументированы межгосударственным стандартом.

Определение твердости металлов по Бринеллю: особенности

Данный тип проверки железных заготовок проводится согласно следующим показателям:

    Продолжительность давления. Для разных типов материала используется разное количество времени. Для стальных и чугунных заготовок – от 10 до 15 секунд, изделия из цветных металлов – 30 сек, в некоторых особых случаях время воздействия может увеличиться до 60-180 с.

    Диаметр шарика. Название данного инструмента – индентор, и в зависимости от типа запчасти принято использовать проверочный инструмент разного диаметра. Величина варьируется от 1 до 10 миллиметров.

    Пиковая величина твердости. При использовании шарика, выполненного из стали – 450 НВ, если используется твердый сплав – 650 НВ.

    Максимальные возможные нагрузки. При измерении прочности используются специальные грузы, которые регулируют силу давления на исследуемую деталь. Минимальное значение такого элемента – 153.2 Н, максимальное – 29420 Н.

Таблица по Бринеллю:

Твердость по Бринеллю D = 10 мм, Р = 3000 кгс), НВ Твердость по Роквеллу (шкала С, Р = 150 кгс), HRC Твердость по Виккерсу, HV Твердость по Шору, HSD
143 - 143 23
149 - 149 24
156 - 155 26
163 2 162 27
170 4 171 28
179 7 178 29
187 9 186 30
197 12 197 31
207 14 208 33
217 17 217 34
229 20 228 36
241 23 240 38
255 25 255 40
269 27 270 42
285 29 285 44
302 31 303 46
321 33 320 49
341 36 344 51
363 39 380 54
388 41 401 57
143 - 143 23
149 - 149 24
156 - 155 26
163 2 162 27
170 4 171 28
179 7 178 29
187 9 186 30
197 12 197 31
207 14 208 33
217 17 217 34
229 20 228 36
241 23 240 38
255 25 255 40
269 27 270 42
285 29 285 44
302 31 303 46
321 33 320 49
341 36 344 51
363 39 380 54
388 41 401 57
415 43 435 61
444 46 474 64
477 49 534 68
514 52 587 73
555 56 650 78
600 60 746 84
653 64 868 91
682 66 941 94
712 68 1022 98
745 70 1116 102
780 72 1220 106

Измерение твердости металлов по методу Бринелля

Для вычисления необходимого параметра данным способом необходимо выполнить следующую последовательность действий:

    Проверьте заготовку на соответствие требованиям межгосударственного стандарта.

    Убедитесь в исправности прибора.

    Подберите подходящий наконечник, задайте необходимое усилие, а также установите грузик задайте время.

    Запустите прибор и начните проверку материала.

    Измерьте диаметр деформации.

    Вычислите необходимую величину.

Для выполнения последнего пункта вам понадобится следующая формула:

  • А – площадь деформации, ее величиной является мм2,
  • Из этого получим:

    • НВ = (0,102*F) / (T*D*h)
    • D – диаметр используемого наконечника, измерения проводятся в мм,
    • h – длина отпечатка вглубь, величина – миллиметры.

    Данная методика отличается повышенной точностью, особенно при проверке мягких материалов. Является одним из основных и самых популярных способов измерения твердости металлов и сплавов.

    Определение твердости металла по Роквеллу

    Данный способ появился еще в начале 20 века и отличается более автоматизированным процессом. Отметим, что данный тип проверок используется чаще всего для заготовок из твердого металла.

    К характеристикам данной методики можно отнести:

      Время проверки – от 10 секунд до минуты.

      Показатель на корпусе приспособления для проверки можно вычислить арифметически.

      Пиковые показатели – HRA 20-800, HRB 20-100, HRC 20-70.

      Инденторы. Выделяют 11 шкал в зависимости от используемого наконечника, чаще всего используют А, В или С.

    Рассмотрим типы наконечников:

      А – конусообразное изделие, выполненное из алмаза. Пиковая величина давления – 60 кгс. Такие приборы используют в основном для проверки тонкого проката.

      В – шарообразные индентор, размер которого составляет 1,588 миллиметра. Чаще всего выполнен из закаленной стали. Его тяжесть составляет 100 кгс. Применим для заготовок из отожженных материалов.

      С – алмазный наконечник, нажатие которого составляет 150 кгс. Использовать данное приспособление следует при проверке закаленных материалов.

    Пробы можно проводить неоднократно. Их количество зависит лишь от размера заготовки. Расстояние между местом проведения измерения должно составлять около четырех диаметров наконечника. Также следует обратить внимание, что данный способ применим не ко всем металлам. Толщина изделия должна быть как минимум в десять раз больше, чем глубина вхождения индентора.

    Таблица по Роквеллу:

    Чтобы выполнить проверку данным способом вам понадобится выполнить следующие действия:

      Проверьте размеры и параметры заготовки.

      Выберите необходимый индентор и укажите нагрузку.

      Зафиксируйте деталь.

      Выполните первичную нагрузку, величина которой должна составить 10 кгс.

      Проведите полную проверку.

      Полученный результат появится на шкале прибора.

    Для проверки результата можно вычислить итог путем математического расчета.

    Если вы используете алмазный индентор, нажатие которого составляет 60-150 кгс:

    • HR = 100 - ((H-h) / 0.002)

    При применении железного шарообразного наконечника с давлением около 100 кгс, следует использовать следующую формулу:

    • HR = 130 - ((H-h) / 0.002)
    • h – длина вдавливания индентора вглубь при первом давлении,
    • Н – аналогичная величина при повторной, полной нагрузке,
    • 0,002 – показатель перемещения наконечника при смещении твердости на одну единицу.

    Данная методика является наиболее простой из всех предложенных, однако отличается не самым точным результатом. Несмотря на это, она позволяет рассчитывать коэффициенты для сплавов из твердых металлов.

    Способы определения твердости металлов: метод Виккерса

    Данный тип проверки является самым простым и точным. Вся процедура заключается во вдавливании алмазного пирамидообразного индентора в корпус заготовки. У данного приема существуют следующие характеристики:

      Наконечник. Используется алмазный индентор под углом 136 градусов.

      Время давления – 10-15 секунд.

      Пиковая величина нагрузки. Для чугуна и изделий из стали – от 5 до 100 кгс, сплавы из меди выдерживают от 2,5 до 50 кгс, заготовки из алюминия – от 1 до 100 кгс.

      Проверяемые материалы. Данный способ подразумевает исследование следующих металлов – стальные сплавы и цветмет с 450-500 НВ, а также, прошедшие химическую и термическую обработку.

    Следуйте инструкции для выполнения проверки данным способом:

      Убедитесь в пригодности заготовки и корректной работе аппаратуры.

      Назначьте максимально допустимое усилие.

      Зафиксируйте запчасть.

      Запустите прибор.

      Получите итоговые числа на экране устройства.

    Если вы хотите проверить результат путем математического анализа, обратитесь к предложенной формуле:

    • HV = 1.8544 * (F / d2)
    • HV – единица твердости металла,
    • F – усилие, измерения производятся в кгс,
    • d – величина отпечатка в миллиметрах.

    Данная методика служит для высокоточных исследований тонких заготовок, а также изделий маленького размера. Способ позволяет получить максимально точную цифру.

    Благодаря собственному производству мы предлагаем оборудование европейского качества по выгодным ценам. Функционал наших приборов повторяет, а во многом даже превосходит импортные системы.

    Для получения подробной информации и консультации обращайтесь к нам по телефону, указанному на сайте. Наш оператор ответит на все возникшие вопросы.

    Определение твердости металлов и сплавов: соответствия между разными типами измерений

    Имея на руках результат одного способа проверки, можно получить данные в других шкалах. Для этого существуют таблицы соответствия. Ознакомимся с ними поближе:

    Данная таблица обладает высокой точностью, так как составлена путем неоднократных исследований.

    В статье мы рассказали про методы измерения твердости металлов и сплавов, рассмотрели их особенности, дали подробные инструкции и предложили таблицу соответствия. Для более точных измерений используйте качественное оборудование. Его вы найдете в нашем каталоге.

    Министерство образования и науки Российской Федерации

    Федеральное агентство по образованию

    Саратовский государственный технический университет

    Определение твердости материалов

    Методические указания к учебно-исследовательской лабораторной работе для студентов всех специальностей

    дневной, вечерней и заочной форм обучения

    Одобрено

    редакционно-издательским советом

    Саратовского государственного

    технического университета

    Саратов 2009

    Цель работы: ознакомить студентов с методами определения твердости материалов

    Определение твердости является широко применяемым в лабораторных и заводских условиях способом испытаний для характеристики механических свойств материалов.

    Твердость металлов измеряют при помощи воздействия на поверхность металла наконечника, изготовленного из малодеформирующего материала (твердая закаленная сталь, алмаз, сапфир, или твердый сплав). Наконечник может иметь форму шарика, конуса, пирамиды или иглы.

    Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника: вдавливание наконечника, царапание поверхности, удар наконечника-шарика.

    Наибольшее применение получило измерение твердости вдавливанием. В результате вдавливания поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформации в том, что она протекает только в небольшом объеме, окруженном недеформированным металлом. Таким образом, твердость характеризует сопротивление металла пластической деформации и представляет собой его механическое свойство.

    Следует различать два способа определения твердости вдавливанием: измерение макротвердости и измерение микротвердости:

    1. Измерение твердости (макротвердости) характерно тем, что в испытуемый металл вдавливается тело значительных размеров (например, стальной шарик диаметром 10 мм), проникающее на сравнительно большую глубину. В результате чего в деформируемом объеме оказываются представленными все фазы и структурные составляющие сплава. Измеренная твердость должна в этом случае характеризовать твердость всего испытуемого материала (“усредненная” твердость).

    Выбор формы, размеров наконечника и величины нагрузки зависят от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца.

    2. Измерение микротвердости имеет целью определить твердость отдельных зерен, фаз и структурных составляющих сплава. В этом случае объем, деформированный вдавливанием, должен быть меньше объема измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой.

    Наиболее широко применяются следующие способы измерения твердости:

      вдавливанием стального шарика (метод Бринелля);

      вдавливанием алмазного конуса (метод Роквелла);

      вдавливанием четырехгранной алмазной пирамиды (метод Виккерса).

    ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЕМ ШАРИКА

    (ТВЕРДОСТЬ ПО БРИНЕЛЛЮ)

    Этот способ используется для определения твердости как металлов, так и неметаллических материалов.

    При измерении твердости металлов по Бринеллю в материал вдавливается стальной закаленный шарик под действием заданной нагрузки в течении определенного времени. В результате на поверхности образца образуется отпечаток, диаметр которого измеряют. Значение твердости определяют по величине поверхности отпечатка, оставляемого шариком. Шарик вдавливается с помощью пресса (рис. 1). Испытуемый образец (деталь) 3 устанавливается на столик 1, прошлифованной поверхностью кверху. Поворотом вручную маховика 2 по часовой стрелке столик поднимают вверх, и образец 3 прижимается к шарику 4. Нагрузка прилагается автоматически с помощью электродвигателя 5 при нажатии пусковой кнопки. Эта нагрузка, создаваемая грузом 6, действует обычно 10-60 с в зависимости от твердости измеряемого материала. После автоматического выключения двигателя, поворачивая маховик 2 против часовой стрелки, опускают столик прибора и снимают образец 3.

    Рис. 1. Схема измерения твердости по Бринеллю

    На образце остается отпечаток со сферической поверхностью (лунка). Диаметр отпечатка, измеряют обычно лупой, на окуляре которой нанесена шкала с делениями, соответствующими 0,1 мм. Схема испытания на твердость по методу Бринелля и отсчет по шкале показаны на рис. 1.

    Число твердости по Бринеллю, обозначаемая НВ, определяется путем деления нагрузки на площадь поверхности сферического отпечатка, и может быть определено по формуле:

    выражена в Ньютонах или

    ,

    выражена в килограмм-силе.

    В этих выражениях

    А – площадь поверхности отпечатка, мм;

    D - диаметр вдавливаемого шарика, мм;

    d - диаметр отпечатка, мм.

    Диаметр шарика, нагрузку и продолжительность выдержки под нагрузкой выбирают в зависимости от твердости и толщины испытуемого изделия или образца. Для испытания используют образцы с чистой и гладкой поверхностью, а толщина образцов должна быть не менее десятикратной глубины отпечатка.

    Нормы испытания на твердость по Бринеллю приведены в табл. 1.

    Таблица 1

    Нормы испытания на твердость по Бринеллю

    При измерении твердости шариком определенного диаметра и установленными нагрузками нет необходимости проводить расчет по указанной выше формуле. На практике используется заранее составленными таблицами, указывающими число НВ от диаметра отпечатка.

    Измерение твердости по Бринеллю не является универсальным способом, поскольку не позволяет:

    а) использовать материалы с твердостью более НВ4500Н, так как шарик будет деформироваться и показания будут не точны;

    б) измерять твердость тонкого поверхностного слоя (толщиной 1-2 мм), так как шарик будет продавливать тонкий слой металла.

    ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЕМ

    АЛМАЗНОГО КОНУСА ИЛИ СТАЛЬНОГО ШАРИКА

    (ТВЕРДОСТЬ ПО РОКВЕЛЛУ)

    Принципиальное отличие измерения твердости по способу Роквелла от измерения по способу Бринелля состоит в том, что ее измеряют не по диаметру, а по глубине отпечатка получаемого в результате вдавливания алмазного конуса с углом при вершине равным 120 о или стального закаленного шарика диаметром 1,588 мм. Конус или шарик вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок: предварительной Р 0 и основной будет равна: Р= Р 0 + Р 1 .

    При испытании сначала прикладывают предварительную нагрузку Р 0 =100 Н, затем общую нагрузку Р , равную: при вдавливании шарика (шкала В) 1000 Н; при вдавливании алмазного конуса (шкала С) 1500 Н; при вдавливании алмазного конуса (шкала А) 600 Н (рис. 2).

    Рис.2. Разновидность глубины проникновения наконечника под действием двух нагрузок

    Твердость по Роквеллу обозначается цифрами и буквами HR с указанием шкалы твердости (А,В,С).

    Число твердости по Роквеллу определяют по формуле

    HR = (k-(h-h 0 )/c

    где h 0 - глубина внедрения наконечника под действием силы Р 0 ;

    h - глубина внедрения наконечника под действием общей

    нагрузки Р ;

    к - постоянная величина, для шарика 0,26; для конуса 0,2;

    с - цена деления циферблата индикатора.

    При измерении твердости нагрузка должна действовать строго перпендикулярно к поверхности образца. Нагрузки следует прилагать плавно.

    Твердость измеряют на приборе, представленном на рис. 3.

    Рис.3. Схема прибора для измерения твердости по Роквеллу

    Стол 1 служит для установки на нем испытуемого образца 3. Вращая по часовой стрелке маховик 2, подводят образец до соприкосновения с наконечником 4. При дальнейшем вращении маховика наконечник начинает внедряться в образец, а на шкале индикатора наблюдают за поворотом малой стрелки. Предварительное нагружение производят до тех пор, пока малая стрелка индикатора не совпадет с красной точкой.

    Когда образец получает предварительную нагрузку 100 Н (10 кГс), большая стрелка индикатора принимает вертикальное положение (или близкое к нему). Точную установку шкалы индикатора на ноль производят при помощи барабана 6. Затем нажимают на клавишу 7, при этом обеспечивается действие основной нагрузки и создается общая нагрузка (предварительная + основная).

    При таком нагружении большая стрелка перемещается по циферблату индикатора против часовой стрелки. Время приложения общей нагрузки 5-7 с. Затем основная нагрузка снимается автоматически и остается только предварительная. Большая стрелка индикатора перемещается по часовой стрелке. Цифра, которую укажет на циферблате индикатора большая стрелка, представляет число твердости по Роквеллу. Далее поворачивают маховик 2 против часовой стрелки, опускают столик и снимают образец.

    Твердость на приборе Роквелла можно измерять:

    1) алмазным конусом с общей нагрузкой 1500 Н (150 кГс). В этом случае значение твердости определяют по черной шкале “С” индикатора и обозначают НRC. Эта шкала применяется при испытании закаленных сталей (до HRC 67);

    2) алмазным конусом с общей нагрузкой 600 Н (60 кГс). В этом случае значения твердости также определяются по черной шкале “С”, но обозначают HRA. Числа HRA можно перевести на числа HRC по формуле: HRC = 2 HRA - 104. Эта шкала применяется для испытания сверхтвердых сплавов (например на основе карбидов вольфрама, обладающих твердостью HRC>68), тонкого листового материала и для измерения твердости тонких поверхностных слоев (0,3-0,5 мм);

    3) стальным шариком с общей нагрузкой 1000 Н (100 кГс).

    В этом случае значения твердости определяют по красной шкале “В” и обозначают HRB. Шкала В служит для испытания металлов средней твердости и для испытания изделия толщиной от 0,8 до 2 мм.

    К достоинствам метода Роквелла следует отнести высокую производительность, простоту обслуживания, точность измерения и сохранение качественной поверхности после испытаний.

    ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЯ

    АЛМАЗНОЙ ПИРАМИДЫ

    (ТВЕРДОСТЬ ПО ВИККЕРСУ)

    Этот способ используется для измерения твердости черных и цветных металлов и сплавов.

    Твердость по методу Виккерса определяют путем вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды с углом при вершине 136 0 под нагрузкой 50, 100, 200, 300, 500, 1000 Н. По диагоналям h 1 и h 2 отпечатка, пирамиды и углу при вершине пирамиды определяют площадь поверхности отпечатка и рассчитывают по формуле:

    HV = (2 P sin (/2)/ d 2 ) = 1,854 (P / d 2 ),

     - угол между противоположными гранями пирамиды (136 0);

    d – среднеарифметические значения длин обеих диагоналей отпечатка после снятия нагрузки, мм.

    Испытания проводят на приборе (рис. 4), имеющем неподвижную станину, в нижней части которой установлен столик 1, перемещающийся по вертикали вращением маховика 2. Образец 3 устанавливают на столик испытуемой поверхностью кверху и поднимают столик почти до соприкосновения образца с алмазной пирамидой 4. Нажатием педали пускового рычага 5 приводят в действие нагружающий механизм, который через рычаг передает давление грузов 6. Продолжительность нагружения при испытании составляет от 10 до 60 с, что регистрируется сигнальной лампочкой на приборе. После снятия нагрузки столик опускают и подводят микроскоп 7, с помощью которого определяют длину диагонали отпечатка.

    Рис.4. Схема прибора для измерения твердости по Виккерсу

    В окуляре микроскопа (рис. 5,б) имеются подвижная шкала и три штриха - два основных 1 и 2, и один дополнительный 3 (рис. 5,б). Вращением винта 1 (рис. 5,а) подводят штрих 1 к левому углу отпечатка (рис. 5,б). Вращением микрометрического винта 2 (рис. 5,а) подводят штрих 2 к правому углу отпечатка. Полученную величину диагонали отпечатка записать в протокол испытания.

    Рис.5. Схемы: а). микрометрического винта; б). определения величины отпечатка

    Измерять необходимо обе диагонали отпечатка и принимать среднюю величину измерений. Полученный результат перевести в значение твердости HV, пользуясь таблицами. Возможность применения малых нагрузок 50, 100 Н позволяет определить твердость деталей малой толщины и тонких поверхностных слоев, например, цементированных, азотированных и других.

    Числа твердости по Виккерсу и по Бринеллю для материалов твердостью до НВ 4500 практически совпадают. Вместе с тем, измерения пирамидой дают более точные значения для металлов с высокой твердостью, чем измерения шариком или конусом. Алмазная пирамида имеет большой угол в вершине (136 0) и диагональ его отпечатка примерно в 7 раз больше глубины отпечатка, что повышает точность измерения даже при проникновении пирамиды на небольшую глубину.

    ИЗМЕРЕНИЕ МИКРОТВЕРДОСТИ

    Для изучения свойств и превращений в сплавах необходимо знать не только «усредненную» твердость, представляющую твердость в результате суммарного влияния присутствующих в сплаве фаз и структурных составляющих. В некоторых случаях необходимо знать твердость отдельных фаз и структур. Микротвердость определяют вдавливанием алмазной пирамиды. Для этого используют прибор типа ПМТ-3 (рис.6), разработанный М.Н. Хрущевым и Е.С. Берковичем. Прибор состоит из штатива 8, вертикальной микроскопа с тубусом, который перемещается вверх и вниз с помощью макрометрического винта 6 и микрометрического винта 5. На верхний конец тубуса насажен окулярный микрометр 7, а в нижнем конце закреплены шток 2 с алмазной пирамидой, опакиллюминатор 9 и объективы 11. С помощью микрометрических винтов 13 перемещают столик в необходимом направлении. Ручка 1 служит для поворота столика на 90 о. Прибор снабжен двумя объективами для просмотра микрошлифа при увеличениях в 478 и 135 раз. Окуляр увеличивает в 15 раз. Окулярный микрометр имеет неподвижную сетку, отсчетный микрометрический барабанчик и каретку с подвижной сеткой. На неподвижной сетке нанесены штрихи с цифрами и угольник с прямым углом, вершина которого совпадает с цифрой 0. Для определения микротвердости применяют несколько типов наконечников: с квадратным основанием; с основанием в виде равностороннего треугольника; с ромбическим основанием; с бицилиндрическим основанием. Наиболее широко используют алмазный наконечник. Наконечник имеет угол между гранями на вершине 136 о (такой же как для измерения твердости по Виккерсу). Нагрузка для вдавливания создается грузами 3, которые устанавливаются на шток 2. В приборе применяются грузы от 1 до 500 граммов в зависимости от особенностей изучаемой структуры. Для измерения специально готовят образцы, которые шлифуют и полируют, а при необходимости подвергают травлению реактивами. Приготовленный микрошлиф устанавливают на столике 12, чтобы поверхность микрошлифа была обращена вверх. Установленный микрошлиф просматривают через окуляр. С помощью винтов столик перемещают и выбирают необходимый участок на микрошлифе. Этот участок размещают в середине поля зрения микроскопа точно в вершине угла неподвижной сетки. Затем устанавливают груз. После этого опускают шток с алмазной пирамидой, чтобы алмаз коснулся образца. В этом положении выдерживают 5 – 10 секунд, после чего шток поднимают. Столик 12 поворачивают на 180 о под объектив микроскопа и измеряют диагонали отпечатка. Длина диагонали указывается на микрометрическом барабанчике прибора. Определяют длину обеих диагоналей и вычисляют среднюю длину. Полученную среднюю длину переводят по таблице в число микротвердости. Измерения проводят не менее 2-3 раз. Числа твердости в таблице вычислены по формуле
    и представляют числа твердости по Виккерсу. Прибор позволяет фотографировать микроструктуру сплава с полученными отпечатками.


    Рис.6. Схема прибора ПМТ-3

    ЗАДАНИЕ 1

      Изучить работу прибора для измерения твердости по Бринеллю.

      Определить твердость образцов из углеродистых конструкционных и инструментальных сталей, и сравнить полученные результаты.

      Перевести числа твердости по Бринеллю в числа твердости по Роквеллу.

      Сделать вывод о влиянии состава сплава на его твердость.

    Протокол испытаний на твердость по методу Бринелля

    Таблица 1

    ЗАДАНИЕ 2

      Изучить работу прибора для измерения твердости по методу Роквелла.

      Определить твердость образцов стали в оттоженном состоянии и закаленном состоянии, сплавов цветных металлов и твердых сплавов.

      Результаты измерений внести в протокол испытаний.

      Сделать вывод о влиянии состава материала на его твердость.

    ЗАДАНИЕ 3

      Изучить работу прибора для измерения твердости по методу Виккерса.

      Определить твердость образцов из малоуглеродистой стали после цементации, азотирования.

      Результаты измерений записать в протокол испытаний.

    1. Цель работы.

    2. Задание.

    3. Описание методики проведения испытаний.

    4. Протокол испытания на твердость.

    5. Выводы по работе.

    ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

      Что такое твердость материалов?

      Как измеряется твердость материалов?

      Определение твердости по Бринеллю; по Роквеллу; по Виккерсу.

      Обозначения твердости.

      Область применения методов определения твердости по Бринеллю; по Роквеллу и по Виккерсу.

    ЛИТЕРАТУРА

      Геллер Ю. А. , Рахштадт Л. Г. Материаловедение. М.: Металлургия. 1975.- 345с.

      Самоходний А. И., Кунявский М. Н. Лабораторные работы по металловедению и термической обработки металлов. М.: Машиностроение. 1981.

      Советова Л.В., Гусев В.И. Руководство к лабораторной работе «Определение твердости материалов». Саратов, СПИ, 1982г.

    ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МАТЕРИАЛОВ

    Методические указания к учебно-исследовательской лабораторной работе для студентов всех специальностей

    дневной, вечерней и заочной форм обучения

    Составил:

    Федоров Юлий Степанович


    © 2024
    reaestate.ru - Недвижимость - юридический справочник