10.07.2019

Гиперзвуковая скорость км ч. Интереснейшее интервью годичной давности о гиперзвуке. Из истории авиации


На этой неделе состоялся третий испытательный полет американского гиперзвукового летательного аппарата (ГЛА) X-51 AWaveRider - прототипа перспективной ракеты. Однако через 15 секунд после запуска, еще до начала работы основного двигателя, WaveRider потерял управление и упал в океан.

Предыдущее испытание, состоявшееся в прошлом году, тоже провалилось - ускоритель, разгоняющий аппарат до необходимой для запуска основного двигателя скорости, сработал не вовремя и не отделился. Однако ранее, в 2010-м, двигателю "машины" удалось проработать 200 секунд (планировалось 300), разогнав аппарат до пяти скоростей звука (5М). Продолжительность его работы, таким образом, втрое превысила предыдущий рекорд, поставленный российской/советской гиперзвуковой летающей лабораторией (ГЛЛ) "Холод". При этом, в отличие от отечественного аппарата, "американец" использовал в качестве топлива не водород, а авиационный керосин.

Нынешняя неудача, безусловно, затормозит гиперзвуковую программу США, на которую израсходовано $2 млрд. Однако это не отменяет того факта, что у Штатов уже есть ключевая для этой программы технология — работающий прототип гиперзвукового воздушно-реактивного двигателя (ГПВРД, он же скрамджет).

Потенциально такие двигатели способны разогнать летательный аппарат до 17 скоростей звука на водороде и до 8 - на углеводородном топливе. Однако для его работы необходимо добиться устойчивого горения топлива в сверхзвуковом воздушном потоке - что, по словам одного из разработчиков, ничуть не легче, чем удержать спичку зажженной в эпицентре урагана. Впрочем, еще не так давно считалось, что при использовании углеводородного топлива это в принципе невозможно, а единственным пригодным горючим для ГПРВД является взрывоопасный, создающий эксплуатационные трудности и "раздувающий" объемы топливных баков из-за низкой плотности водород. Тем не менее, начиная с 2004 года на Западе провели ряд относительно успешных испытаний летательных аппаратов — как водородных, так и "керосиновых".

В чем практический смысл двухмиллиардной программы? Проектная скорость Х-51 - 7М (около 7 тыс. км/ч для высоты 20 км), проектная дальность - 1600 км, высота полета - порядка 25 км. Иными словами, по "дальнобойности" он примерно соответствует крылатой ракете BGM-109 "Томогавк" (1600 км, с ядерной боевой частью - 2500 км) или баллистической ракете средней дальности - например, снятой с вооружения по договорам РСМД "Першинг-2" (1770 км). В чем преимущества "волнолета" по сравнению с "конкурентами"?

BGM-109 имеет дозвуковую скорость - 880 км/ч. Таким образом, полет на максимальную дальность занимает около двух часов. На протяжении этого времени ракета может быть обнаружена и уничтожена, а цель может переместиться. Безусловно, летящая на высоте порядка 60 м над землей и обладающая малой радиолокационной заметностью уже в силу размеров крылатая ракета - весьма проблемная цель для ПВО. Однако известны и успешные примеры обороны атакуемых объектов от "Томагавков" — например, иракского ядерного центра во время "Бури в пустыне".

Баллистическая ракета с дальностью того же порядка имеет среднюю скорость около 10 тыс. км/ч. Однако, во-первых, "баллистики" могут быть засечены из космоса уже в момент старта - внушительный факел от работающих ракетных двигателей достаточно хорошо заметен. Во-вторых, максимальная высота траектории баллистических ракет такой дальности приближается к 400 км, поэтому они довольно рано "засвечиваются" на радарах ПРО. В-третьих, "баллистики" — неманеврирующая цель, что делает возможным их перехват даже зенитными ракетами, наводящимися в точке упреждения. В целом при современном развитии систем ПРО баллистическая ракета средней дальности является достаточно уязвимой целью.

При этом баллистические ракеты - феноменально неэффективное средство доставки по соотношению стартовой массы и полезной нагрузки. Химические ракетные двигатели сочетают огромную тягу с еще более чудовищной прожорливостью, а баллистические полеты в принципе энергозатратны. В итоге, например, "Першинг-2" при стартовой массе в 7,4 т нес боевую часть в 399 кг. Для сравнения - "Томагавки" несут почти столько же при собственном весе около полутора тонн.

Теперь сравним с гиперзвуковыми ракетами. Скорость и подлетное время, в общем, сопоставимы с таковым у "Першинг-2". При этом Х-51, во-первых, использует гораздо более экономичный воздушно реактивный двигатель. Во-вторых, не забирается на высоту 400 км, "сообщая" о своем присутствии всем окрестным радарам ПРО. В-третьих — способен активно маневрировать. Заметим, что как показали испытания, проведенные в 2007-м шведской SaabBofors, на скоростях 5,5 М возможны сложные маневры даже в плотных слоях атмосферы. В итоге перехват WaveRider возможен только если перехватчик заметно превосходит последнего в скорости и маневренности. Сейчас таких перехватчиков просто нет.

Существующие комплексы ПРО также неспособны бороться с гиперзвуковыми ракетами класса X-51. При этом даже в случае принципиальной возможности поражения высокая скорость цели резко уменьшает зону перехвата.

Иными словами, WaveRider сочетает подлетное время, сопоставимое с баллистическими ракетами средней дальности, с гораздо меньшей заметностью и фактической неуязвимостью по отношению к современной ПВО/ПРО. Между тем, в свое время руководство СССР пошло на все, чтобы убрать "Першинги" из Европы, разменяв их на гораздо большее количество собственных ракет средней дальности - и не зря. 8-10-минутное подлетное время американских ракет превращало их в почти идеальное средство обезоруживающего и "обезглавливающего" удара - у подвергшихся атаке просто не оставалось времени на ответную реакцию. В случае доведения Х-51 до серии ситуация воспроизведется в ухудшенном варианте - при том, что создание ядерных вариантов "волнолетов" вполне возможно.

При этом применение ГПРВД не ограничивается аппаратами средней дальности. С одной стороны, по мнению консультативной группы HАТО по космическим исследованиям и разработкам (AGARD), скрамджеты могут быть широко использованы в чисто тактических системах малой дальности - это противотанковые ракеты (предназначенные также для поражения укреплений), ракеты "воздух-воздух" и малокалиберные (30-40 мм) снаряды для поражения воздушных целей. Еще одно вероятное направление - использование ГПВРД в противоракетах, предназначенных для перехвата баллистических ракет на начальном участке траектории.

С другой стороны, применение гиперзвуковых технологий способно привести к появлению принципиально новых классов стратегических систем. Наиболее консервативный вариант - использование гиперзвуковых аппаратов в качестве "маневрирующих боеголовок" для традиционных баллистических ракет.

Отметим, что баллистическая ракета большой дальности мало уязвима на среднем участке траектории (поскольку окружена огромным количеством легких ложных целей, дипольными отражателями и постановщиками помех), но уязвима на начальном и конечном участках траектории (легкие ложные цели отсеиваются самой атмосферой, в итоге боеголовку сопровождает только небольшое количество тяжелых ЛЦ). При этом и боеголовка, и ее "свита" представляют собой набор неманеврирующих баллистических целей, что радикально облегчает задачу ПРО. Однако скоростная и маневрирующая "машина" с ГПВРД практически неуязвима для нынешних средств ПВО и ПРО. В итоге, объединив классическую МБР с гиперзвуковым маневрирующим боевым блоком, можно добиться надежного прорыва соответствующего эшелона противоракетной обороны.

Иными словами, речь идет о технологии, способной действительно совершить переворот в военном деле. Гиперзвуковая угроза неизбежно станет реальностью в весьма обозримом будущем.

Так может выглядеть отделение гиперзвукового летательного аппарата от ракеты-носителя.
Фото с сайта www.darpa.mil

17 ноября в США прошли первые удачные испытания гиперзвукового оружия. А 22 ноября министр обороны РФ Анатолий Сердюков заявил на коллегии военного ведомства, что создаваемая в России система воздушно-космической обороны позволит перехватывать любые ракеты, вплоть до гиперзвуковых. А о том, что наша страна обладает маневрирующими гиперзвуковыми ядерными боеголовками, способными преодолевать любую ПРО, наши лидеры заявляют с 2005 года.

СВЕРХЗВУК И ГИПЕРЗВУК

В описании характеристик скоростных летательных аппаратов используется число Маха, названное так по фамилии австрийского ученого Эрнста Маха (нем. E. Mach). Число это не имеет строго определенного цифрового значения, а в упрощенном виде является отношением скорости тела (летательного аппарата) к скорости звука в данной воздушной среде. Для приближенных расчетов число Маха (М) на высотах до 10 тыс. м принимается за 1,1–1,2 тыс. км/час.

Деление летательных аппаратов (ЛА) на дозвуковые, сверхзвуковые и гиперзвуковые отнюдь не условно, а имеет четкие физические основания. И эти три класса летательных аппаратов имеют принципиальные отличия. Сверхзвуковые ЛА могут летать со скоростью не свыше 5 М. Гиперзвуковые ЛА имеют скорость полета свыше 5 М. При этом они способны переходить к динамическому планированию на большие дальности при сохранении высокой скорости.

В США агентство передовых оборонных исследовательских проектов DARPA провело в 2003 году тендер на выполнение эскизных работ по разработке гиперзвукового летательного аппарата Falkon («Сокол»). Девять компаний получили контракты от 350 тыс. до 540 тыс. долл. На следующем этапе в том же году контракты на разработку гиперзвукового транспортного средства стоимостью от 1,2 млн. до 1,5 млн. долл. получили корпорации Andrews Space Inc. (Сиэтл), Lockheed Martin Aeronautics Co. (Палмдейл, Калифорния) и Northrop Grumman Corp. (Эль-Сегундо, Калифорния).

В рамках проекта Falkon ставились следующие задачи:

– создание единой воздушной платформы X-41/Х-43А Common Aero Vehicle (CAV) для гиперзвуковой межконтинентальной баллистической ракеты и крылатой ракеты, а также для гражданского использования;

– создание технологической концепции Hypersonic Technology Vehicle 1 (HTV-1) и ее последующего летного испытания в сентябре 2007 года (отменена);

– создание прототипа Hypersonic Technology Vehicle 2 (HTV-2) с испытанием 22 апреля 2010 года (состоялись, но неудачно);

– создание Hypersonic Technology Vehicle (HTV-3) Blackswift (проект отменен);

– создание малого носителя (ракеты-носителя) SLV и малогабаритного двигателя для проекта Х-41 CAV.

Одной из задач было создание крылатой ракеты Hypersonic Cruise Vehicle (HCV), способной за два часа преодолеть 9 тыс. морских миль (17 тыс. км) и доставить головную часть массой 12 тыс. фунтов (5500 кг). При этом полет должен происходить на очень большой высоте на скорости до 20 М.

Проект HTV-3Х Blackswift предназначался для демонстрации полета и отработки комбинированной двигательной установки из турбины и прямоточного воздушно-реактивного двигателя. Турбина должна была разогнать аппарат до примерно 3 М, а прямоточный воздушно-реактивный двигатель – до 6 М. К разработке привлекли корпорации Lockheed Martin Skunk Works, Boing, ATK. К сотрудничеству пригласили также крупнейшего производителя авиадвигателей Pratt & Whitney.

Главной задачей, по словам заместителя директора DARPA доктора Стивена Уолкера, было преодоление скептицизма – показ реально летающего гиперзвукового аппарата. Это помимо отработки технологий и тестирования конструкционных материалов. В перспективе речь шла о создании гиперзвукового пилотируемого летательного аппарата, способного взлетать по-самолетному с взлетно-посадочной полосы в США и через час-два приземляться в любой точке земного шара на такую же полосу. Однако на 2009 год программа HTV-3Х Blackswift не получила финансирования, и проект оказался закрыт.

Пока все испытательные полеты прототипов и экспериментальных моделей производятся с помощью самолетов или ракет-носителей – вертикальный старт с переходом на большой высоте к горизонтальному полету со сверхзвуковой скоростью. Дальнейший разгон до гиперзвуковой скорости, отделение летательного аппарата от носителя и его планирующий динамический полет с сохранением гиперзвуковой скорости. Для этого аппарат имеет треугольное крыло. Похожи ли реальные аппараты на те картинки, которые размещены в СМИ, этот вопрос остается открытым. Если и похожи, то скорее всего весьма отдаленно.

НЕПЕРСПЕКТИВНЫЙ ВОЛНОЛЕТ

Корпорация Boeing, занимающаяся разработкой гиперзвукового летательного аппарата X-51A Waverider («Волнолет»), построила четыре прототипа. Согласно проекту, Х-51А должен развивать скорость до 7 М. После испытаний должно быть принято решение о дальнейшем финансировании проекта или его прекращении. Сам Boeing высказывал намерение построить еще два образца для дополнительных летных тестов. Все прототипы – одноразовые. После завершения полета они будут падать в океан и восстановлению не подлежат.

При этом Х-51А не является перспективной разработкой, а служит для моделирования и отработки новых технологий. Уже на основе полученных результатов будут заказывать разработку новых образцов гиперзвукового ракетного вооружения. Однако Boeing намерен продолжить работу над Х-51А с целью создания на ее основе «умной» боевой ракеты X-51A+. Эта ракета получит способность резко менять направление полета, самостоятельно находить цель, идентифицировать ее и уничтожать в условиях активного радиоэлектронного противодействия. Соответствующие бортовые системы уже создаются при финансировании ВВС США.

Впервые образец X-51A поднялся в воздух в декабре 2009 года в качестве подвесного груза под крылом бомбардировщика B-52. В ходе экспериментального полета проводилось исследование влияния подвешенной ракеты на управляемость самолета, а также взаимодействие электронных систем X-51A и B-52. Полет длился 1,4 часа.

Первый самостоятельный испытательный полет X-51A состоялся 26 мая 2010 года. Бомбардировщик B-52 Stratofortress с X-51A на высоте 15 тыс. м над Тихим океаном сбросил подвешенную под крыло ракету. После этого разгонная ступень Waverider (ракетные ускорители) вывела аппарат на высоту в 19,8 тыс. м и разогнала ее до 4,8 М. Скорость в 5 М была достигнута на высоте в 21,3 тыс. м.

После этого включился гиперзвуковой прямоточный воздушно-реактивный двигатель производства Pratt & Whitney Rocketdyne. Для запуска в качестве топлива использовался этилен. После этого двигатель перешел на топливо JP-7 (Jet Propellant 7, MIL-T-38219) – сложную смесь углеводородов, включая нафталин, с добавлением смазочных фторуглеродов и окислителя. Но на 110-й секунде полета произошел сбой. Однако работа двигателя восстановилась, полет продолжился, пока на 143-й секунде не случился окончательный отказ. Связь прервалась на три секунды, и операторы передали команду на самоуничтожение. Скорость в 6 М набрать не удалось. Впрочем, звучали заявления, что на первый полет ставилась задача набрать скорость только в 4,5–5 М.

Планировалось, что полет продлится 250 секунд. Израсходована была половина топлива, а причиной сбоя работы двигателя признали плохое уплотнение топливной системы. В целом испытания сочли вполне удавшимися, а результат назвали превосходным. По мнению специалистов, аппарат выполнил 90% поставленных задач. В ходе полета выяснилось, что ракета не способна разгоняться так быстро, как ожидалось, и нагревается гораздо больше, чем рассчитывали. Также происходили перебои со связью и передачей телеметрии.

По словам представителя исследовательской лаборатории ВВС США, первый полет X-51A «получил твердую четверку», а в следующий раз получит пятерку. На тот момент даже такой короткий полет аппарата нового типа выглядел победой. Ведь предыдущий рекорд длительности полета на гиперзвуковой скорости составлял всего 12 секунд. Это произошло 27 марта 2004 года при испытаниях экспериментального образца Х-43А. Тогда также использовался самолет-носитель В-52, а для разгона применили крылатую ракету Pegasus («Пегас»). Старт производился на высоте 12 км. Отделение аппарата от «Пегаса» произошло на высоте 29 км, затем включился прямоточный воздушно-реактивный двигатель, работавший 10 секунд. При скоростном планировании со снижением удалось достичь скорость в 7 М, то есть 8350 км/час. По другим данным, скорость Х-43А составила 11 265 км/ч (или 9,8 М) на высоте полета 33,5 км. Которая цифра более реальна, судить трудно, но эксперты ориентируются на меньшую. Результаты эксперимента открыли дорогу следующему проекту – Х-51А.

Во время вторых испытаний Х-51А 13 июня 2011 года история с отказом двигателя повторилась. Но в этот раз перезапустить его не удалось, и аппарат упал в воды Тихого океана возле побережья Калифорнии. И это уже было расценено как серьезная задержка в создании действующего образца. По всей видимости, проблема в прямоточном двигателе. Теперь придется понять причины сбоя, переработать конструкцию и построить новый двигатель. На это могут понадобиться годы.

ЕЩЕ ОДИН FALCON

Первый гиперзвуковой испытательный полет тестового летательного аппарата по проекту Falcon HTV-2 (Force Application and Launch from Continental United States Hypersonic Technology Vehicle) состоялся 20 апреля 2010 года. Согласно полетному заданию, HTV-2 стартовал с базы ВВС США «Ванденберг» с помощью ракеты-носителя Minotaur IV. Это конверсионный вариант МБР МХ. Экспериментальный аппарат должен был пролететь за полчаса 4100 морских миль (7600 км) и упасть в районе полигона имени Рейгана – атолла Кваджалейн (Маршалловы острова). Согласно опубликованным данным ВВС США, ракета-носитель вывела HTV-2 в верхние слои атмосферы и предположительно разогнала до скорости 20 М – около 23 тыс. км/час. При этом связь с аппаратом была утеряна, телеметрическая информация перестала поступать. Предполагается, что нарушилась стабилизация и аппарат разрушился, входя в более плотные слои атмосферы.

Наиболее вероятной причиной неудачи в DARPA посчитали ошибку с определением центра тяжести аппарата, недостаточную подвижность рулей высоты и стабилизаторов, а также отказ системы управления. При компьютерном моделировании полета появилась версия, что аппарат начал закручиваться вдоль продольной оси, система управления не смогла его стабилизировать и, когда вращение достигло некоего предела, ракета самоуничтожилась.

Главная задача экспериментов с Falcon HTV-2 – проверка технологии теплозащиты корпуса и систем управления. В конструкцию следующего аппарата внесли ряд изменений – сместили центр тяжести, добавили миниатюрные реактивные двигатели для ускоренного разворота. Второе испытание Falcon HTV-2 состоялось 11 августа 2011 года. Выход в верхние слои атмосферы, отделение от ракеты-носителя на скорости 20 М и переход к планированию прошли без сбоев. Однако при скользящем планировании начался разогрев оболочки до температуры близкой к 2000 градусов Цельсия. Полет должен был продлиться 30 минут, но через девять минут аппарат потерял стабильность полета, стал непредсказуемо кувыркаться, начались перебои связи, и последовала команда на самоуничтожение.

17 ноября 2011 года состоялся старт третьего прототипа Falcon HTV-2. Как и в предыдущих случаях, аппарат был запущен ракетой-носителем Minotaur IV, затем разогнан ракетным ускорителем AHW. Обычная боеголовка после этого летит по баллистической траектории. HTV-2 скользил в верхних слоях атмосферы на гиперзвуке. Запуск производился с полигона Pacific Missile Range на Гавайях. Примерно через полчаса аппарат, преодолев 3700 км, упал в воду в районе атолла Кваджалейн на полигоне Reagan Test Site (имени Рейгана). Эти испытания с полным основанием были признаны успешными.

В официальном заявлении Пентагона по итогам испытаний сообщалось: «Цель испытаний – сбор данных по проверке работоспособности гиперзвуковых технологий в условиях продолжительного полета в атмосфере. Упор делался на аэродинамические качества аппарата, его системы наведения, управления и контроля, а также теплозащитное покрытие. Полученная информация будет использована для усовершенствования гиперзвукового летательного аппарата».

В ряде сообщений для СМИ аппарат был назван планирующей бомбой. Но фактически это боеголовка. И вполне вероятно, что однажды США вслед за российскими лидерами объявят, что у них тоже имеются маневрирующие гиперзвуковые боеголовки для межконтинентальных баллистических ракет. А также гиперзвуковые крылатые ракеты и беспилотные боевые аппараты.

Общие сведения

Полет на гиперзвуковой скорости является частью сверхзвукового режима полета и осуществляется в сверхзвуковом потоке газа. Сверхзвуковой поток воздуха коренным образом отличается от дозвукового и динамика полета самолета при скоростях выше скорости звука (выше 1,2 М) кардинально отличается от дозвукового полета (до 0,75 М, диапазон скоростей от 0,75 до 1,2 М называется трансзвуковой скоростью).

Определение нижней границы гиперзвуковой скорости обычно связано с началом процессов ионизации и диссоциации молекул в пограничном слое (ПС) около аппарата, который движется в атмосфере, что начинает происходить примерно при 5 М. Также данная скорость характеризуется тем, что прямоточный воздушно-реактивный двигатель («ПВРД ») с дозвуковым сгоранием топлива («СПВРД ») становится бесполезным из-за чрезвычайно высокого трения, которое возникает при торможении проходящего воздуха в двигателе этого типа. Таким образом, в гиперзвуковом диапазоне скоростей для продолжения полета возможно использование только ракетного двигателя или гиперзвукового ПВРД (ГПВРД) со сверхзвуковым сгоранием топлива.

Характеристики потока

В то время как определение гиперзвукового потока (ГП) достаточно спорно по причине отсутствия четкой границы между сверхзвуковым и гиперзвуковым потоками, ГП может характеризоваться определенными физическими явлениями, которые уже не могут быть проигнорированы при рассмотрении, а именно:

Тонкий слой ударной волны

По мере увеличения скорости и соответствующих чисел Маха, плотность позади ударной волны (УВ) также увеличивается, что соответствует уменьшению объема сзади от УВ благодаря сохранению массы. Поэтому, слой ударной волны, то есть объем между аппаратом и УВ становится тонким при высоких числах Маха, создавая тонкий пограничный слой (ПС) вокруг аппарата.

Образование вязких ударных слоев

Часть большой кинетической энергии, заключенной в воздушном потоке, при М > 3 (вязкое течение) преобразуется во внутреннюю энергию за счет вязкого взаимодействия. Увеличение внутренней энергии реализуется в росте температуры . Так как градиент давления, направленный по нормали к потоку в пределах пограничного слоя, приблизительно равен нулю, существенное увеличение температуры при больших числах Маха приводит к уменьшению плотности. Таким образом, ПС на поверхности аппарата растет и при больших числах Маха сливается с тонким слоем ударной волны вблизи носовой части, образуя вязкий ударный слой.

Появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам

Высокотемпературный поток

Высокоскоростной поток в лобовой точке аппарата (точке или области торможения) вызывает нагревание газа до очень высоких температур (до нескольких тысяч градусов). Высокие температуры, в свою очередь, создают неравновесные химические свойства потока, которые заключаются в диссоциации и рекомбинации молекул газа, ионизации атомов, химическим реакциям в потоке и с поверхностью аппарата. В этих условиях могут быть существенны процессы конвекции и радиационного теплообмена .

Параметры подобия

Параметры газовых потоков принято описывать набором критериев подобия , которые позволяют свести практически бесконечное число физических состояний в группы подобия и которые позволяют сравнивать газовые потоки с разными физическими параметрами (давление, температура, скорость и пр.) между собой. Именно на этом принципе основано проведение экспериментов в аэродинамических трубах и перенос результатов этих экспериментов на реальные летательные аппараты, несмотря на то, что в трубных экспериментах размер моделей, скорости потока, тепловые нагрузки и пр. могут сильно отличаться от режимов реального полёта, в то же время, параметры подобия (числа Маха, Рейнольдса, Стантона и пр.) соответствуют полётным.

Для транс- и сверхзвукового или сжимаемого потока, в большинстве случаев таких параметров как число Маха (отношение скорости потока к местной скорости звука) и Рейнольдса достаточно для полного описания потоков. Для гиперзвукового потока данных параметров часто бывает недостаточно. Во-первых, описывающие форму ударной волны уравнения становятся практически независимыми на скоростях от 10 М. Во-вторых, увеличенная температура гиперзвукового потока означает, что эффекты, относящиеся к неидеальным газам становятся заметными.

Учет эффектов в реальном газе означает бо́льшее количество переменных, которые требуются для полного описания состояния газа. Если стационарный газ полностью описывается тремя величинами: давлением , температурой, теплоёмкостью (адиабатическим индексом), а движущийся газ описывается четырьмя переменными, которая включает еще скорость , то горячий газ в химическом равновесии также требует уравнений состояния для составляющих его химических компонентов, а газ с процессами диссоциации и ионизации должен еще включать в себя время как одну из переменных своего состояния. В целом это означает, что в любое выбранное время для неравновесного потока требуется от 10 до 100 переменных для описания состояния газа. Вдобавок, разреженный гиперзвуковой поток (ГП), обычно описываемый в терминах чисел Кнудсена , не подчиняются уравнениям Навье-Стокса и требуют их модификации. ГП обычно категоризируется (или классифицируется) с использованием общей энергии, выраженной с использованием общей энтальпии (мДж /кг), полного давления (кПа) и температуры торможения потока (К) или скорости (км/с).

Идеальный газ

В данном случае, проходящий воздушный поток может рассматриваться как поток идеального газа. ГП в данном режиме все еще зависит от чисел Маха и моделирование руководствуется температурными инвариантами , а не адиабатической стенкой , что имеет место при ме́ньших скоростях. Нижняя граница этой области соответствует скоростям около 5 М, где СПВРД с дозвуковым сгоранием становятся неэффективными, и верхняя граница соответствует скоростям в районе 10-12 М.

Идеальный газ с двумя температурами

Является частью случая режима потока идеального газа с большими значениями скорости, в котором проходящий воздушный поток может рассматриваться химически идеальным, но вибрационная температура и вращательная температура газа должны рассматриваться отдельно, что приводит к двум отдельным температурным моделям. Это имеет особое значение при проектировании сверхзвуковых сопел , где вибрационное охлаждение из-за возбуждения молекул становится важным.

Диссоциированный газ

Режим доминирования лучевого переноса

На скоростях выше 12 км/с передача тепла аппарату начинает происходить в основном через лучевой перенос, который начинает доминировать над термодинамическим переносом вместе с ростом скорости. Моделирование газа в данном случае подразделяется на два случая:

  • оптически тонкий - в данном случае предполагается, что газ не перепоглощает излучение, которое приходит от других его частей или выбранных единиц объема;
  • оптически толстый - где учитывается поглощение излучения плазмой, которое потом переизлучается в том числе и на тело аппарата.

Моделирование оптически толстых газов является сложной задачей, так как из-за вычисления радиационного переноса в каждой точке потока объем вычислений растет экспоненциально вместе с ростом количества рассматриваемых точек.

См. также

Примечания

Ссылки

  • Anderson John Hypersonic and High-Temperature Gas Dynamics Second Edition. - AIAA Education Series, 2006. - ISBN 1563477807
  • NASA’s Guide to Hypersonics (англ.) .

Мне задают вопросы про испытания новой ракеты "Авангард" с "гиперзвуковыми" (называется скорость полета в атмосфере 20-27 Махов, т.е. скоростей звука) боевыми блоками.

Скажу честно - для серьезного комментария инфы не хватает, а та, что есть - крайне противоречива. Но кое-что сказать можно.

Начну с определения понятия "гиперзвуковой". В авиации гиперзвуковой скоростью считается скорость уже 5-6 (разумеется, и более) скоростей звука для данной высоты. Почему для данной? Потому что скорость звука в воздуха зависит от его давления, а давление падает с высотой. Соответственно, на разных высотах скорость звука разная (кому интересно - погуглите стандарт МСА - международной стандартной атмосферы).

В общем случае гиперзвуковой скоростью обладает любой аппарат, летящий в атмосфере со скоростью более М>5...6
Например, спускаемый аппарат космического корабля "Союз" при возврате из космоса входит в атмосферу с первой космической скоростью (примерно М=23...24), а любая ракета-носитель, стартуя с земной поверхности и разгоняясь до первой космической скорости, тоже с какого-то момента летит на гиперзвуковой скорости (пока не выйдет за пределы атмосферы). Но - внимание! Назвать из гиперзвуковыми летательными аппаратами нельзя! И именно здесь начинается мухлеж, который мы слышим из официальных источников при бахвальстве нашим новым оружием: сначала "Кинжалом", теперь "Авангардом". Потому что не любой аппарат, летящий на гиперзвуковой скорости, является "гиперзвуковым летательным аппаратом". Например, боеголовки баллистических ракет, летающие с середины прошлого века и входящие в атмосферу на гиперзвуке, не являются гиперзвуковыми летательными аппаратами (ГЛА).

В авиации есть четкое определение ГЛА - это летательный аппарат, какое-то время осуществляющий УСТАНОВИВШИЙСЯ гиперзвуковой полет в атмосфере. Установившийся - это когда сила тяги двигателя компенсирует сопротивления воздуха (обеспечивается постоянство гиперзвуковой скорости), а сила тяжести компенсируется аэродинамической подъемной силой (постоянство высоты полета). При этом маневрирование (изменение направления полета) может обеспечиваться отклонением аэродинамических поверхностей (рулей) или изменением вектора тяги двигателя.

Двигатель может быть ракетным (жидкостным или твердотопливным) или воздушно-реактивным (например гиперзвуковым прямоточным воздушно-реактивным).

Ракетный двигатель работает очень непродолжительное время, измеряемое секундами (десятками). Поэтому аппарат с ракетным двигателем сначала набирает скорость, а потом, после выработки топлива и выключения двигателя, летит по инерции, тормозясь сопротивлением встречного потока воздуха. Именно поэтому ракета, часть времени летя со сверхзвуковой скоростью, НЕ ЯВЛЯЕТСЯ гиперзвуковым летательным аппаратом. Соответственно, "Кинжал" является аэробаллистической ракетой "Искандер" воздушного базирования, но не гиперзвуковым летательным аппаратом. Как те же "Сатана" или "Искандер".

Установившийся гиперзвуковой полет может обеспечить только гиперзвуковой воздушно-реактивный двигатель (ГПВРД), выгодно отличающийся от ракетного тем, что если для него топливо (горючее и окислитель) запасаются на борту летательного аппарата и сжигаются за десятки секунд, то у гиперзвукового аппарата с ГПВРД на борту только горючее, а окислитель (кислород) берется из окружающей атмосферы. Именно это обеспечивает на порядки более высокую эффективность (экономичность) ГПВРД, и время его работы десятки минут и более.

Суммируя сказанное: гиперзвуковой летательный аппарат - это аппарат с гиперзвуковой КРЕЙСЕРСКОЙ скоростью, выполняющий УСТАНОВИВШИЙСЯ полет на гиперзвуковой скорости, как правило - за счет гиперзвукового воздушно-реактивного двигателя. И из имеющейся информации, ни "Авангард", ни его планирующие боевые блоки не являются гиперзвуковыми летательными аппаратами, а всего лишь - маневрирующими боеголовками с увеличенным атмосферным участком полета. И судя по всему - летящими по инерции. Напомню, что первые пуски прообразов таких боевых блоков были осуществлены в СССР еще в 1960-х годах (например, "ракетопланы" МП-1 Владимира Челомея).

Что же касается собственно создания по-настоящему гиперзвуковых летательных аппаратов с ГПВРД, то это сложнейшая инженерно-техническая задача, решение которой в "Авангарде" и рядом не стоит. И насколько это вообще "по зубам" современной России - баааальшой вопрос... Это и у американцев пока не получается, а мы от них в этом плане сильно в заднице, хотя в СССР были хорошие наработки в рамках темы "Холод".

Почему "Холод"? Да потому что топливом для гиперзвуковых летательных аппаратом может быть только жидкий водород или сжиженный газ, теплоемкость которых помогает охлаждать аппарат и гиперзвуковой двигатель в полете.
Еще два момента, требующие пояснений, судя по комментам на пуск "Авангарда".

Первый - температура лобовой ("наветренной") части боевого блока в 2000 град. С при температуре во фронте ударной волны в 20000 градусов - вполне реально. Достаточно вспомнить, что "углерод-углеродные" носки на "Буране" выдерживали температуру до 1750 градусов, а с тех пор появились новые материалы (кому интересно - смотрите здесь http://www.buran.ru/htm/tersaf4.htm , ниже к посту дана картинка для плиточной теплозащиты "Бурана").

Второй - скорость полета М=27. Многие обратили внимание, что эта скорость выше первой космической, т.е. и наш "Буран", и американские шаттлы, и различные спускаемые аппараты, как и все боеголовки баллистических ракет, входят в атмосферу с более низкой скоростью. Например, для "Бурана" расчет посадочной траектории начинался с высоты 152500 метров ("официальная граница" космоса 100 км) - в этот момент он имел скорость 7578 метров секунду, что равнялось 22,82 Маха. Корабль падал, т.е. ускорялся, поэтому максимальное число Маха=27,92 достигалось на высоте 93-90 км. Это все еще космос, атмосферы почти нет. Например, скоростной напор (динамическое давление встречного потока) на этой высоте на указанной скорости 7,5 км/с составляет всего... 10 кг на квадратный (!) метр. В таких условиях говорить о "гиперзвуковом" полете на высоте 90 км может только полный идиот. Ну, или гуманитарий. Ну а по температуре уже все заметно - с начальных 27 градусов Цельсия на орбите к высоте 90 км температура успевает подняться до 1200 градусов.

Однако если говорить о максимальном нагреве (здесь важен кумулятивный эффект, да и скоростной напор нарастает быстрее темпа снижения скорости), то максимум 1656 градусов С достигается к высоте 77800 метров (скорость 7582 м/с, или М=26.69), и держится до высоты 69400 метров (скорость 6277 м/с, или М=21.05). Как видите, названные скорости М=27 вполне реальны, но установившийся полет на таком режиме при современных технологиях немыслим. Все, что мы сегодня слышим - это выхватывание дилетантами цифр из контекста.

Ну а что касается "подарка на Новый год" - сначала пенсию верни, балабол...

PS: что еще могу добавить. В середине "нулевых" годов появилась крайне интересная и сверхсекретная тема (напрягшимся компетентным товарищам могу дать ссылку на единственную открытую публикацию в журнале "Авиационная техника и технологии" НПО "Молния) - так называемые "трансатмосферные летательные аппараты". В двух словах - УСТАНОВИВШИЙСЯ полет в атмосфере на КРЕЙСЕРСКИХ скоростях ВЫШЕ первой космической скорости. Но здесь, судя по всему, абсолютно не тот случай...

PPS: и последнее (если быть точным) - в качестве определения для "гиперзвукового летательного аппарата" я использовал определение термина "гиперзвуковой самолет"


Повышение рабочих температур теплозащитных материалов

Сначала стоит конечно определиться, гиперзвук это сколько? Принято считать, что гиперзвуковая скорость, это скорость выше 5 М, то есть больше пяти чисел Маха , а если совсем просто, то это скорость в пять раз превышающая скорость звука.

Вам интересно сколько это в километрах в час? От 5380 км/ч до 6120 км/ч в зависимости от параметров среды (для самолета — воздуха), то есть от плотности воздуха которая разная на разных высотах полета. Так что, для простоты восприятия, все таки лучше пользоваться числами Маха. Если скорость воздушного судна превысила значение 5 М — это гиперзвуковая скорость.

Собственно почему именно 5 М? Значение 5 было выбрано потому, что при такой скорости начинают наблюдаться ионизация потока газа и другие физические изменения, что конечно влияет на его свойства. Эти изменения особенно заметны для двигателя, обычные ТРД (турбореактивные двигатели) просто не могут работать на такой скорости, нужен принципиально иной двигатель, ракетный или прямоточный (хотя на самом деле он и не такой уж другой, просто в нем отсутствует компрессор и турбина, а свою функцию он выполняет так же: сжимает воздух на входе, смешивает его с топливом, сжигает в камере сгорания, и получает реактивную струю на выходе).

Фактически, прямоточный двигатель, это труба с камерой сгорания, очень просто и эффективно на большой скорости. Вот только у такого двигателя есть огромный недостаток, ему для работы нужна определенная начальная скорость (своего компрессора то нет, нечем сжимать воздух на малой скорости).

История скорости

В 50-е годы шла борьба за достижения скорости звука. Когда инженеры и ученые поняли, как ведет себя самолет при скорости выше скорости звука и научились создавать летательные аппараты предназначенные для таких полетов, пришло время идти дальше. Заставить самолеты летать еще быстрее.


В 1967 году американский экспериментальный летательный аппарат X-15 достиг скорости 6,72 М (7274 км/ч). Он был оснащен ракетным двигателем и летал на высотах от 81 до 107 км (100 км, это линия Кармана, условная граница атмосферы и космоса). Поэтому, правильнее называть X-15 не самолетом, а ракетопланом. Взлететь самостоятельно он не мог, ему требовался самолет-разгонщик. Но все таки, это был гиперзвуковой полет. Причем, летали X-15 с 1962 по 1968 годы, а 7 полетов на X-15 совершил тот самый Нил Армстронг.

Стоит понимать, что полеты вне атмосферы, какими бы быстрыми они не были не корректно считать гиперзвуковыми, ведь плотность среды в которой движется летательный аппарат очень мала. Эффектов присущих сверхзвуковому или гиперзвуковому полету просто не будет.


В 1965 году YF-12 (прототип знаменитого SR-71) достиг скорости 3,331,5 км/ч, а в 1976 уже сам серийный SR-71 — 3,529,6 км/ч. Это "всего лишь" 3,2-3,3 М. Далеко не гиперзвук, но уже для полетов на этой скорости в атмосфере пришлось разрабатывать специальные двигатели, которые на малых скоростях работали в обычном режиме, а на высоких в режиме прямоточного двигателя, а для пилотов — специальные системы жизнеобеспечения (скафандры и системы охлаждения), так как самолет нагревался слишком сильно. Позднее, эти скафандры использовались для проекта Шаттл. Очень долгое время SR-71 являлся самым скоростным самолетом в мире (летать он перестал в 1999 году).


Советский Миг-25Р теоретически мог достичь скорости в 3,2 М, но эксплуатационная скорость ограничивалась значением 2,83 М.


В те же 60-е в США и СССР существовали проекты космических проектов X-20 «Dyna Soar» и "Спираль" соответственно. Для Спирали изначально предполагалось использование гиперзвукового самолета-разгонщика, потом сверхзвукового, а потом проект вообще закрыли. Та же судьба постигла и американский проект.

Вообще проекты именно гиперзвуковых летательных аппаратов того времени были связны с полетами вне атмосферы. Иначе и быть не может, на "малых" высотах слишком высока плотность и соответственно сопротивление, что приводит ко многим негативным факторам, которые в то время преодолеть не смогли.

Настоящее время

За всеми перспективными исследованиями, как обычно стоят военные. В случае с гиперзвуковыми скоростями, это тоже имеет место. Сейчас исследования ведутся в основном в направлении космических аппаратов, гиперзвуковых крылатых ракет и так называемых гиперзвуковых боевых блоках. Теперь уже речь идет о "настоящем" гиперзвуке, полетах в атмосфере.

Обратите внимание, работы по гиперзвуковым скоростям были в активной фазе в 60-70 годах, потом все проекты были закрыты. Вернулись к скоростям выше 5 М только на рубеже 2000-х годов. Когда технологии позволили создавать эффективные прямоточные двигатели для гиперзвуковых полетов.

В 2001 первый полет совершил беспилотный летательный аппарат с прямоточным двигателем

Boeing X-43. Уже в 2014 он разогнался до скорости в 9,6 М (11 200 км/ч). Хотя проектировался X-43 для скоростей в 7 раз выше скорости звука. При этом рекорд был поставлен не в космосе, а на высоте всего 33 500 метров.

В 2009 году начались испытания прямоточного двигателя для крылатой ракеты компании Boeing X-51A Waverider. В 2013 году аппарат X-51A разогнался до гиперзвуковой скорости — 5,1 М на высоте 21 000 метров.

Аналогичные проекты на разных стадиях осуществляют и другие страны: Германия (SHEFEX), Великобритания (Skylon), Россия («Холод» и «Игла»), Китай (WU-14) и даже Индия (Брамос), Австралия (ScramSpace) и Бразилия (14-X).

Интересный проект летательного аппарата для полета с гиперзвуковой скоростью в атмосфере, американский Falcon HTV-2, считается провальным. Предположительно, Falcon смог разогнаться до огромной для атмосферы скорости — 23 М. Но только предположительно, так как все экспериментальные аппараты просто напросто сгорели.

Все перечисленные летательные аппараты (кроме Skylon) не могут самостоятельно набрать необходимую для работы прямоточного двигателя скорость и используют разные ускорители. Но Skylon пока только проект не сделавший пока ни единого испытательного полета.

Далекое будущее гиперзвука

Существуют и гражданские проекты гиперзвуковых самолетов для перевозки пассажиров. Это европейские SpaceLiner с одним типом двигателя и ZEHST который должен использовать целых 3 типа двигателя на разных режимах полета. Также над своими проектами работают и другие страны.

Такие лайнеры предположительно смогут доставить пассажиров из Лондона в Нью-Йорк всего лишь за час. Полетать на таких самолетах мы сможем не раньше 40-х, 50-х годов 21 века. А пока гиперзвуковые скорости остаются уделом военных либо космических аппаратов.


© 2024
reaestate.ru - Недвижимость - юридический справочник