29.09.2019

Выборочное лазерное спекание (SLS). SLS — детали из высокотемпературных пластиков и сплавов


SLS (Selective Laser Sintering) – селективное лазерное спекание, одна из наиболее широко применяемых аддитивных технологий . Принцип действия SLS заключается в точечном спекании пластиковых порошков с разными компонентами лазерным лучом. Также существуют машины, которые спекают порошковый металл – эта технология 3D-печати металлом устарела, но еще применяется. Мощность луча в производственных 3D-принтерах варьируется от 30 до 200 ватт.

Метод был создан в середине 1980-х в Техасском университете в Остине Карлом Декардом и Джо Биманом. В 1989 году изобретение запатентовала основанная Декардом фирма DTM Corporation, которую впоследствии приобрела компания . В недрах последней была создана еще одна фундаментальная аддитивная технология – это лазерная стереолитография (SLA-печать). Этот факт, несомненно, сыграл свою роль в укреплении лидирующих позиций компании в индустрии трехмерной печати. SLS-установки, выпускаемые 3D Systems, представляют собой наиболее передовые решения на рынке.


Процесс селективного лазерного спекания

  1. Технологический процесс начинается с разогревания материала до температуры, близкой к температуре плавления, что обеспечивает более быструю работу порошкового 3D-принтера .
  2. Порошок подается в камеру построения и разравнивается валиком на толщину минимального слоя материала.
  3. Лазерный луч спекает слои порошка в необходимых участках, совпадающих с сечением 3D-модели.
  4. Подается следующий слой порошка, камера построения опускается на уровень ниже.
  5. Процедура повторяется, пока не получится готовое изделие.

Работающие по технологии SLS, имеют гибкие настройки. В зависимости от поставленных задач регулируются такие параметры, как температура, глубина и время воздействия. Также пользователь может задать работу либо только с переходными границами, либо спекание по всей глубине модели.

По завершении процесса построения может потребоваться финишная обработка. Для придания изделию идеально ровной формы выполняют полировку или шлифовку. Однако по мере усовершенствования технологий потребность в постобработке изделий, изготовленных на SLS-принтерах, становится все менее актуальной.

Технология 3D-печати по технологии SLS широко применяется в следующих отраслях:

  • авиакосмическая промышленность;
  • машиностроение;
  • строительство;
  • архитектура, искусство, дизайн;
  • инженерная отрасль.

Селективное лазерное спекание используется при изготовлении:

  • функциональных прототипов;
  • продукции мелкосерийного производства;
  • моделей для точного ;
  • шлангов труб, прокладок, изоляционных шайб и других элементов в инженерии и строительстве;
  • деталей силовых установок и многого другого.

Специфика и преимущества SLS-технологии

Особенность селективного лазерного спекания – в том, что для построения геометрически сложных деталей не используется материал поддержки . В роли поддерживающей структуры выступает порошок, не подвергшийся воздействию лазерного луча.

Материалы для 3D-печати по технологии SLS – пластиковые порошки с примесями, обладающие разными механическими свойствами. Широкий выбор материалов дает предприятиям, внедрившим SLS-технологию, дополнительную гибкость (подробнее – в разделе «Материалы для SLS-печати»).

Детали, созданные на SLS-установках 3D Systems

Отсутствие поддержек дает возможность моделировать сложнейшую геометрию (как внутренних элементов, так и целого изделия), которой нельзя добиться при создании изделий традиционными методами. Кроме того, исключается риск повреждения напечатанной детали. Как результат – значительная экономия времени на сборку и средств на материалы.

Еще одна важная выгода, которую дает технология, – большой объем камер построения . Это дает возможность напечатать достаточно крупные объекты или небольшую партию за одну сессию. Максимальный размер камеры, реализованный в 3D-принтере 3D Systems sPro 230, – 550 х 550 х 750 мм.

Технология обеспечивает высокую скорость печати . Поскольку она не предполагает полное расплавление частиц материала, SLS-установки более производительны, чем другие 3D-принтеры, работающие с порошками.

Модели и прототипы, созданные методом SLS, имеют превосходные механические характеристики : они отличаются прочностью, гибкостью, хорошей детализацией и термической стабильностью. не имеет себе равных, когда стоит задача изготовить долговечные пластиковые продукты. В плане прочности полученных изделий селективное лазерное спекание конкурирует с традиционными способами производства, такими как литье под давлением.

Как и у всех аддитивных технологий, у SLS-метода есть минусы. Во-первых, выращенные модели, как правило, требуют последующей обработки из-за шероховатой или пористой структуры. Во-вторых, предъявляются особые требования к помещению и условиям эксплуатации (главное – это фильтрация воздуха при кондиционировании, так как порошок вреден) . Наконец, как и в случае со всеми технологиями 3D-печати , это необходимость в крупных первоначальных инвестициях из-за высокой стоимости материалов и оборудования.

Материалы для SLS-печати

Благодаря широкому ассортименту технология SLS достаточно универсальна. Сюда входят однокомпонентные порошки или порошковые смеси из различных материалов, таких как:

  • полимеры (в том числе , нейлон);
  • металлы и сплавы (сталь, титан, драгоценные металлы, сплавы кобальта и хрома);
  • композитные материалы;
  • керамика;
  • стекло;
  • песчаные составы.

В 3D-принтерах 3D Systems используются материалы серии DuraForm, характеризующиеся высокой прочностью и долговечностью.

Перспективы развития технологии

Технология SLS изначально использовалась для быстрого прототипирования, но постепенно сфера ее применения расширялась. Селективное лазерное спекание показало отличные результаты при мелкосерийном изготовлении готовых изделий, мастер-моделей для литья и т.д.

Не так давно еще одним интересным направлением применения технологии стало изготовление предметов искусства. Технология продолжает развиваться: внедряются новые материалы, повышается мощность лазерного излучения, проводятся разработки по использованию нескольких материалов в одном технологическом процессе.

Профессиональные SLS-принтеры становятся производительнее, компактнее, проще в эксплуатации, при этом на рынке уже появились настольные модели, ориентированные на домашнее использование. Потенциал селективного лазерного спекания огромен, ведь этот метод открывает простор для реализации самых перспективных технических и творческих идей.


Технология SLS (Selective Laser Sintering) — селективное лазерное спекание, является одной из технологий производства изделий любой геометрии из порошкообразного материала. Свое развитие, как и другие подобные методы, технология начала в 70-х годах прошлого века.

Так, в 1971 году француз Пьер Сиро (Pierre Ciraud) подал заявку на патент, описывающая способ изготовления изделий из порошкового материала, основанный на отверждении и скреплении порошка под воздействием сфокусированного луча энергии.

Представленная технология имеет малое отношение к любой из сегодняшних коммерческих аддитивных технологий, но она стала предшественником более поздних разработок технологии лазерной обработки материалов.

А в 1979 году, изобретатель по имени Росс Хоушолдер (Ross F. Housholder) подал заявку на патент, с описанием системы и метода создания трехмерного изделия слой за слоем, имеющего сходство с будущими технологиями лазерного спекания. Но из-за чрезвычайно высокой стоимости лазеров в то время, Хоушолдер смог только частично протестировать свой метод.

Коммерчески успешная технологии селективного лазерного спекания была разработана и запатентована студентом Техасского Университета в Остине Карлом Декардом (Carl Deckard) и его научным руководителем, профессором машиностроения Джо Биманом (Joe Beaman) в середине 1980-х годов при поддержке агентства DARPA (агентство передовых оборонных исследовательских проектов) и агентства NSF (независимое агентство при правительстве США, отвечающее за развитие науки и технологий).

Суть технологии заключалась в применении метода производства трехмерного объекта из металлического порошка под воздействием луча лазера , когда частицы порошка нагреваются лишь до оплавления внешнего слоя, достаточного для их скрепления. Процесс необходимо проводить в герметической емкости, заполненной инертным газом, чтобы избежать возгорания порошка и утечки токсичных газов, выделяющихся при твердотельном синтезе.

К сведению: термин «спекание» относится к процессу, с помощью которого объекты создаются из порошков с использованием механизма диффузии атомов. Диффузия атомов происходит в любом материале при температуре выше абсолютного нуля, но процесс происходит гораздо быстрее при более высоких температурах, поэтому спекание вызывается нагреванием порошка при достаточно высоких температурах. Поскольку в первых устройствах для построения 3D-изделий применялся порошок ABS пластика, термин «спекание» наиболее технически-точно отражал происходящие процессы. Однако, когда в установках начали использовать кристаллические и полу-кристаллические материалы, такие как нейлон и металлы, которые растекаются в процессе построения изделий, название «селективное лазерное спекание» уже хорошо зарекомендовало себя и осталось, несмотря на то, что стало неправильным.

В технологии SLS применяются многокомпонентные порошки или порошковые смеси из разных химических материалов, в отличие от технологии DMLS (), где в основном используются однокомпонентные порошки.

В первом прототипе устройства получить готовое изделие не удалось, так как в нем использовался лазер мощностью всего 2 Ватта. Перепроверив математические расчеты, Карл Декард выяснил, что при переносе физической константы с одной страницы на другую, ошибся почти на 3 порядка. После чего, лазер был заменен на более мощный — 100 Bт твердотельный лазер, где качестве активной среды используется алюмо-иттриевый гранат. Позднее стали применяться лазеры на диоксиде углерода.

В конце 1986 года Декард совместно с заместителем декана, доктором Полом Ф. МакКлюром (Paul F. McClure) и бизнесменом Гарольдом Блэром (Harold Blair) основывают компанию Nova Automation, которая в феврале 1989 года была переименована в DTM corp.

Первые установки разработанные в DTM corp назывались Mod A и Mod B, а первая партия из 4 установок была выпущена под названием 125S. В 2001 году DTM corp была куплена компанией 3D Systems, создавшей конкурирующую технологию — .

Компания 3D Systems была и остается одним из лидеров аддитивного производства, а получение прав на технологию селективного лазерного спекания — важная веха для развития коммерческого применения аддитивных технологий. В настоящий момент компания 3D Systems является одним из лидеров на рынке 3D-печати, наряду с такими компаниями как EOS GmbH и Stratasys Inc.

Компания EOS, после продажи 3D Systems в 1997 году своего направления специализирующегося на выпуске SLA оборудования, сфокусировалась на разработке оборудования использующего технологию SLM (селективное лазерное плавление).

Материалы:

  • металлические порошки,
  • пластиковые порошки,
  • нейлон (чистый, стеклонаполненный или с другими наполнителями),
  • керамика,
  • стекло (кварцевый песок).

Основные области применения:

  • Готовые продукты, печатающиеся индивидуально или небольшими сериями
  • Прототипы деталей и частей машин и механизмов
  • Инструменты для производства
  • Преcс-формы

Отрасли применения:

  • Аэрокосмическая отрасль (производство титановых форсунок и лопастей для турбин)
  • Автомобильная отрасль и машиностроение
  • Нефтяная отрасль
  • Энергетика
  • Медицина (слуховые аппараты, стоматология)

Вконтакте

Одноклассники

3D печать – это выполнение ряда повторяющихся операций, связанных с созданием объёмных моделей путём нанесения на рабочий стол установки тонкого слоя расходных материалов , смещением рабочего стола вниз на высоту сформированного слоя и удалением с поверхности рабочего стола отработанных отходов. Циклы печати непрерывно следуют друг за другом: на предыдущий слой материалов наносится следующий слой, стол снова опускается и так повторяется до тех пор, пока на элеваторе (так называют рабочий стол, которым оснащён 3D принтер) не окажется готовая модель.

Существует несколько технологий 3D печати, которые отличаются друг от друга по типу прототипирующего материала и способам его нанесения. В настоящее время наибольшее распространение получили следующие технологии 3D печати: стереолитография, лазерное спекание порошковых материалов, технология струйного моделирования, послойная печать расплавленной полимерной нитью, технология склеивания порошков, ламинирование листовых материалов и УФ-облучение через фотомаску. Охарактеризуем перечисленные технологии подробнее.

Стереолитография

Стереолитография – она же Stereo Lithography Apparatus или сокращённо SLA благодаря низкой себестоимости готовых изделий получила наибольшее распространений среди технологий 3D печати.

Технология SLA состоит в следующем: сканирующая система направляет на фотополимер лазерный луч, под действием которого материал твердеет. В качестве фотополимера используется хрупкий и твёрдый полупрозрачный материал, который коробится под действием атмосферной влаги. Материал легко склеивается, обрабатывается и окрашивается. Рабочий стол находится в ёмкости с фотополимерной композицией. После прохождения лазерного луча и отверждения очередного слоя его рабочая поверхность смещается вниз на 0,025 мм – 0,3 мм.

SLA технология

Оборудование для SLA печати изготавливают компании F& S Stereolithographietechnik GmbH, 3DSystem, а также Институт проблем лазерных и информационных технологий РАН.

Ниже показаны шахматные фигуры, созданные методом SLA печати.

Шахматные фигуры, созданные методом SLA печати

Лазерное спекание порошковых материалов

Лазерное спекание порошковых материалов – оно же Selective Laser Sintering или просто SLS является единственной технологией 3D печати, которая может быть использована для изготовления металлических формообразующих для металлического и пластмассового литья. Пластмассовые прототипы обладают хорошими механическими свойствами, благодаря которым они моту быть использованы для изготовления полнофункциональных изделий.

В SLS печати используются материалы, близкие по своим свойствам к конструкционным маркам: металл, керамика, порошковый пластик. Порошковые материалы наносятся на поверхность рабочего стола и запекаются лазерным лучом в твёрдый слой, соответствующий сечению 3D модели и определяющий её геометрию.

SLS технология

Оборудование для SLS-печати изготавливают следующие заводы: 3D Systems, F& S Stereolithographietechnik GmbH, The ExOne Company / Prometal, EOS GmbH.

На рисунке представлена скульптурная модель «Так держать», изготовленная методом SLS печати.

Скульптурная модель «Так держать», изготовленная методом SLS печати, автор Лука Ионеску

Послойная печать расплавленной полимерной нитью

Послойная печать расплавленной полимерной нитью – она же Fused Deposition Modeling или просто FDM применяется для получения единичных изделий, приближенных по своим функциональным возможностям к серийным изделиям, а также для изготовления выплавляемых форм для литья металлов.

Технология FDM печати заключается в следующем: выдавливающая головка с контролируемой температурой разогревает до полужидкого состояния нити из ABC пластика, воска или поликарбоната, и с высокой точностью подаёт полученный термопластичный моделирующий материал тонкими слоями на рабочую поверхность 3D принтера. Слои наносятся друг на друга, соединяются между собой и отвердевают, постепенно формируя готовое изделие.

Технология FDM печати

В настоящее время 3D принтеры с технологией FDM печати изготавливаются компанией Stratasys Inc.

На картинке изображена модель, напечатанная 3D принтером с технологией FDM печати.

Модель, напечатанная 3D принтером с технологией FDM печати

Технология струйного моделирования

Технология моделирования или Ink Jet Modelling имеет следующие запатентованные подвиды: 3D Systems (Multi-Jet Modeling или MJM), PolyJet (Objet Geometries или PolyJet) и Solidscape (Drop-On-Demand-Jet или DODJet).

Перечисленные технологии функционируют по одному принципу, но каждая из них имеет свои особенности. Для печати используются поддерживающие и моделирующие материалы. К числу поддерживающих материалов чаще всего относят воск, а к числу моделирующих – широкий спектр материалов, близких по своим свойствам к конструкционным термопластам. Печатающая головка 3D принтера наносит поддерживающий и моделирующий материалы на рабочую поверхность, после чего производится их фотополимеризация и механическое выравнивание.

Технология струйного моделирования позволяет получить окрашенные и прозрачные модели с различными механическими свойствами, это могут быть как мягкие, резиноподобные изделия, так и твёрдые, похожие на пластики.

Технология струйного моделирования

Принтеры для 3D печати с использованием технологии струйного моделирования изготавливают следующие компании: Solidscape Inc, Objet Geometries Ltd, 3D Systems.

Технология склеивания порошков

– она же Binding powder by adhesives позволяет не просто создавать объёмные модели, но и раскрашивать их.

Принтеры с технологией binding powder by adhesives используют два вида материалов: крахмально-целлюлозный порошок, из которого формируется модель, и жидкий клей на водной основе, проклеивающий слои порошка. Клей поступает из печатающей головки 3D принтера, связывая между собой частицы порошка и формируя контур модели. После завершения печати излишки порошка удаляются. Чтобы придать модели дополнительную прочность, её пустоты заливаются жидким воском.

Технология склеивания порошков

Условные обозначения:

1-2 – ролик наносит тонкий слой порошка на рабочую поверхность; 3 – струйная печатающая головка печатает каплями связующей жидкости на слое пороша, локально укрепляя часть сплошного сечения; 4 – процесс 1-3 повторяется для каждого слоя до готовности модели, оставшийся порошок удаляется

В настоящее время 3D принтеры с технологией склеивания порошков изготавливаются компанией Z Corporation.

Ламинирование листовых материалов

Ламинирование листовых материалов – оно же Laminated Object Manufacturing или LOM предполагает изготовление 3D моделей из бумажных листов при помощи ламинирования. Контур очередного слоя будущей модели вырезается лазером, а ненужные обрезки режутся на небольшие квадратики, которые впоследствии удаляются из принтера. Структура готового изделия похожа на древесную, но боится влаги.

Технология ламинирования листовых материалов

До недавнего времени 3D принтеры для ламинирования листовых материалов производила компания Helisys Inc, но в настоящее время компания прекратила выпуск такого оборудования.

Объект, напечатанный на 3D принтере с технологией ламинирования листовых материалов, показан на фото ниже.

Модель, напечатанная 3D принтером с технологией LOM

Облучение ультрафиолетом через фотомаску

Облучение ультрафиолетом через фотомаску – оно же Solid Ground Curing или SGC предполагает создание готовых моделей из слоёв распыляемого на рабочую поверхность фоточувствительного пластика. После нанесения тонкого слоя пластика он через специальную фотомаску с изображением очередного сечения обрабатывается ультрафиолетовыми лучами. Неиспользованный материал удаляется при помощи вакуума, а оставшийся затвердевший материал повторно облучается жёстким ультрафиолетом. Полости готового изделия заполняются расплавленным воском, который служит для поддержки следующих слоёв. Перед нанесением последующего слоя фоточувствительного пластика предыдущий слой механически выравнивается.

Вконтакте

SLS или Selective Laser Sintering - технология аддитивного производства, основанная на послойном спекании порошковых материалов (полиамиды, пластик) с помощью луча лазера.

Что лучше печатать: прочные и точные промышленные изделия для функциональных тестов, объекты со сложной геометрией, детали механизмов и двигателей, небольшие партии готовых изделий.

Недостатки: высокая стоимость расходных материалов и оборудования.

Альтернатива: металл - SLM (сплавление металлических порошков, выше прочность); пластик - FDM (себестоимость ниже, хуже качество поверхностей и детализация).

Технологию SLM часто путают с другой схожей порошковой технологией 3D-печати - SLM . Главное различие этих процессов в том, что SLS-технология производит лишь частичное плавление поверхности частиц, необходимое для спекания их вместе. В свою очередь технология SLM (сплавление материала) обеспечивает полную лазерную плавку частиц, необходимую для построения монолитных изделий.

Преимущества технологии селективного лазерного спекания

  • Прекрасные механические свойства готовой продукции: высокая прочность, точность построения, качественные поверхности.
  • Оборудование для SLS-печати оснащается большими камерами построения (до 750 мм), что позволяет изготавливать большие изделия или целые партии небольших объектов за одну печатную сессию.
  • Не требует материала поддержки: процесс практически безотходен, неиспользованный материал может повторно использоваться для печати.
  • Высокая производительность: SLS-принтеры не нуждаются в полном расплавлении частиц материала, что позволяет им работать гораздо быстрее других порошковых 3D-принтеров.

Процесс изготовления объектов по технологии SLS

Процесс печати по технологии Selective Laser Sintering заключается в послойном спекании частиц порошкообразного материала до образования физического объекта по заданной CAD-модели. Спекание материала происходит под воздействием луча одного или нескольких лазеров. Перед началом процесса построения расходный материал разогревается почти до температуры плавления, что облегчает и ускоряет работу SLS-установки.

Процесс построения по технологии SLS аддитивен. То есть «выращивание» изделия происходит слой за слоем снизу вверх. Специальный равняющий механизм подает порошок из камеры с расходным материалом в камеру построения. Затем лазер «прожигает» слой изделия на основе компьютерной модели. После этого в камеру построения подается следующий слой материала. Процесс повторяется до тех пор, пока объект не будет полностью построен. В ходе печати платформа построения постоянно опускается вниз (шаг равен толщине печатного слоя). Таким образом, зона взаимодействия материала и луча лазера всегда находится на одном уровне.

Как было сказано выше, SLS-процесс не нуждается в использовании специальных материалов поддержки. В качестве опорных структур для строящейся модели здесь выступает неиспользованный порошок (который после извлечения готового объекта очищается и может снова использоваться для печати).

Материалы для SLS-печати

3D-принтеры, работающие по технологии SLS, используют для печати различные виды порошковых пластиков. Оборудование компании 3D Systems работает с промышленными материалами серии DuraForm:

DuraForm EX Natural - ударопрочный жесткий материал белого цвета;
DuraForm EX Black - ударопрочный материал черного цвета, по свойствам аналогичен полипропилену и инженерному ABS;
DuraForm Flex - гибкий резиноподобный износостойкий материал;
DuraForm FR 100 - огнестойкий инженерный пластик, подходит для производства аэрокосмических деталей;
DuraForm GF - жесткий инженерный пластик, повышенная термостойкость и изотропные свойства;

Кривилев М.Д., Харанжевский Е.В., Анкудинов В.Е., Гордеев Г.А. // Журнал Управление большими системами: сборник трудов, Выпуск № 31 / 2010, УДК 62.1 + 53.043, ББК 34.5

Рассматривается проблема оптимизации режимов лазерного спекания ультрадисперсных металлических порошков, характеризуемая нестационарным теплопереносом в пористой среде при одновременном протекании фазовых превращений. На основании анализа механизмов переноса и геометрических характеристик пористой среды рассчитаны скорости нагрева/охлаждения и глубина спекания порошка при различных режимах обработки. Численным моделированием установлено, что основными управляющими параметрами системы являются скорость сканирования луча и коэффициент проникновения лазерного излучения, зависящий от пористости и структуры порошкового слоя. Механизм теплопереноса при значениях пористости свыше 70

ОПИСАНИЕ НА АНГЛИЙСКОМ ЯЗЫКЕ:

Control of laser sintering in metallic powders

Krivilev M.D., Haranzhevskiy Evgeniy, Gordeev Georgiy, Ankudinov Vladimir, Udmurt State University

Optimization of laser sintering of submicron metal powders is studied in connection with unsteady heat transfer in a porous layer under simultaneous phase transformations. The eating/cooling rates and the depth of the sintered layer are estimated after analysis of geometrical characteristics of the metallic powder. Computer modeling revealed that the control parameters of the process are the scanning velocity and the permeability coefficient which depends on porosity and structure of the powder layer. At high porosity >70

Введение
Лазерное спекание порошковых материалов основано на активно разрабатываемом методе селективного лазерного спекания
(selective laser sintering – SLS) , когда смесь материалов с различными температурами плавления подвергают тепловой обработке. В результате происходит синтез материала со сложной структурой, где керамические и металлические частицы связаны посредством матрицы на органической основе, и появляется возможность быстрого создания прототипов деталей практически из любых материалов. Гибкость технологии достигается благодаря непосредственному компьютерному управлению процессом, причем, в отличие от традиционных методов изготовления деталей, где требуется механическая обработка, трехмерные детали изготавливаются непосредственно путем послойного напекания порошка. Металлические изделия, изготовленные методом SLS, применяются в мелкосерийном производстве, например, для изготовления литейных форм, в том числе, для литья под давлением. Несмотря на то, что SLS-технология обеспечивает получение хорошей точности размеров деталей и повторяемость производства, её применение ограничено резким снижением механических и триботехнических свойств деталей. Более того, в результате оплавления частиц порошка (обычно используются порошки со средним размером частиц 5 мкм) и действия термокапиллярных сил, в материале образуются поры и раковины размером до 100 мкм, что является дефектом, ограничивающим применение деталей.
Общей чертой SLS-технологий является низкая скорость введения тепловой энергии. Наиболее часто в этих процессах используется непрерывный режим генерации лазерного излучения.
Понимание механизмов, управляющих процессами структурообразования при лазерной обработке, естественным образом приводит к идее модернизации семейства SLS-технологий путём изменения энергетических режимов лазерной обработки материалов в сторону значительного увеличения скорости кристаллизации. Высокая локальность скоростной лазерной обработки ультрадисперсных материалов позволяет избежать недостатков, присущих традиционным SLS-технологиям (термические напряжения, крупные поры, неровность поверхности и большой припуск на механическую обработку), формировать и фиксировать метастабильное структурное состояние с уникальными механическими свойствами.
Лазерное спекание порошков представляет собой многократно повторяющийся процесс, включающий несколько стадии: (а)
нанесение порошкового слоя и выравнивание его роликом; (б) лазерная обработка (сканирование) порошкового слоя с полным проплавлением легкоплавкой компонента порошковой смеси; (в) чистка полученного слоя; (г) сдвиг столика с образцом вниз на величину толщины одного слоя; (д) повторение всего процесса, то есть нанесение следующего порошкового слоя, лазерное сканирование и т.д. Обработка осуществляется в камере с продувкой инертным газом и управляется компьютером для получения заданной 3D-геометрии детали.
Поверхность получаемых покрытий представляет собой сложное наноструктурное состояние, характеризующееся наличием метастабильных фаз. Особенностью структуры является система связанных пор разного масштаба: от наноразмерных пор до пор размером в несколько микрометров. Данные выводы сделаны по результатам сопоставления нескольких методов исследования: Оже-спектроскопии, рентгеновской дифракцией, растровой электронной микроскопии. Результаты исследований структуры приведены в работе и показывают сложную зависимость структурных параметров спечённых слоёв от режимов лазерного излучения.


© 2024
reaestate.ru - Недвижимость - юридический справочник