29.09.2019

Твердотопливные ракетные двигатели. Ракетное топливо (РТ)


Конструкция двигателя на твердом топливе (ТТРД) проста; он состоит из корпуса (камеры сгорания) и реактивного сопла. Камера сгорания является основным несущим элементом двигателя и ракеты в целом. Материалом для его изготовления служит сталь или пластик. Сопло предназначено для разгона газов до определенной скорости и придания потоку требуемого направления. Представляет собой закрытый канал специального профиля. В корпусе находится топливо. Корпус двигателя обычно изготавливают из стали, иногда - из стеклопластика. Часть сопла, которая испытывает наибольшее напряжение, делается из графита, тугоплавких металлов и их сплавов, остальная часть - из стали, пластмасс, графита.

Когда газ, образовавшийся в результате сгорания топлива, проходит через сопло, он вылетает со скоростью, которая может быть больше скорости звука. Как результат - возникновение силы отдачи, направление которой противоположно истечению струи газа. Эту силу называют реактивной , или просто тягой. Корпус и сопло работающих двигателей необходимо защищать от прогорания, для этого в них применяют теплоизолирующие и жаропрочные материалы.

По сравнению с другими типами ракетных двигателей, ТТРД достаточно просто устроен, но имеет пониженную тягу, малое время работы и сложности в управлении. Поэтому, являясь достаточно надежным, он используется, в основном, для создания тяги при «вспомогательных» операциях и в двигателях межконтинентальных баллистических ракет.

До настоящего времени ТТРД редко использовались на борту космических аппаратов. Одна из причин этого - чрезмерное ускорение, которое сообщается конструкции и аппаратуре ракеты при работе твердотопливного двигателя. А для старта ракеты необходимо, чтобы двигатель развивал небольшую по величине тягу в течение продолжительного промежутка времени.

Твердотопливные двигатели позволили США осуществить в 1958 году вслед за СССР запуск первого своего искусственного спутника и вывести в 1959 году космический аппарат на траекторию полета к другим планетам. На сегодняшний день именно в США создан самый мощный космический ТТРД - DM-2, способный развить тягу в 1634 т.

Перспективами развития космических двигателей на твердом топливе являются:

  • улучшение технологий изготовления двигателя;
  • разработка реактивных сопел, которые смогут работать большее время;
  • использование современных материалов;
  • совершенствование составов смесевого топлива и т. д.

Твердотопливный ракетный двигатель (ТТРД) - двигатель, работающий на твердом горючем, наиболее часто используется в ракетной артиллерии и значительно реже в космонавтике; является старейшим из тепловых двигателей.

В качестве топлива в таких двигателях применяют твердое вещество (смесь отдельных веществ), способное гореть без доступа кислорода, выделяя при этом большое количество раскаленных газов, которые используются для создания реактивной тяги.

Существуют два класса горючего для ракет: двухосновные топлива и смесевые топлива.

Двухосновные топлива — представляют собой твердые растворы в нелетучем растворителе (чаще всего нитроцеллюлоза в нитроглицерине). Достоинства - хорошие механические, температурные и другие конструкционные характеристики, сохраняют свои свойства при длительном хранении, просты и дешевы в изготовлении, экологичны (при сгорании нет вредных веществ). Недостаток - сравнительно невысокая мощность и повышенная чувствительность к ударам. Заряды из этого топлива применяются чаще всего в небольших корректирующих двигателях.

Смесевые топлива — современные смеси состоят из перхлората аммония (в качестве окислителя), алюминия в форме порошка и органического полимера - для связывания смеси. Алюминий и полимер играют роль горючего, причем металл является основным источником энергии, а полимер - основным источником газообразных продуктов. Характеризуются нечувствительностью к ударам, высокой интенсивностью горения при низких давлениях и очень трудно гасятся.

Горючее в виде топливных зарядов помещается в камеру сгорания. После старта горение продолжается до полного выгорания горючего, тяга изменяется по законам, обусловленным горением топлива, и практически не регулируется. Изменение тяги достигается использованием топлива с различными скоростями горения и выбором подходящей конфигурации заряда.

При помощи воспламенителя компоненты топлива разогреваются, между ними начинается химическая реакция окисления-восстановления, и топливо постепенно сгорает. При этом образуется газ с высоким давлением и температурой. Давление раскаленных газов при помощи сопла превращается в реактивную тягу, которая по своей величине пропорциональна массе продуктов сгорания и скорости их вылета из сопла двигателя.

При всей простоте точный расчет эксплуатационных параметров ТТРД является сложной задачей.

Твердотопливные двигатели обладают рядом преимуществ перед жидкостными ракетными двигателями: двигатель достаточно прост для изготовления, может храниться долгое время, сохраняя при этом свои характеристики, относительно взрывобезопасен. Однако по мощности они уступают жидкостным двигателям примерно на 10–30 %, имеют сложности при регулировании мощности и большую массу двигателя в целом.

В ряде случаев применяется разновидность ТТРД, в котором один компонент горючего находится в твёрдом состоянии, а второй (чаще всего окислитель) - в жидком.

Вопрос снижения стоимости запусков ракет-носителей стоял всегда. Во времена космической гонки СССР и США мало задумывались о затратах - престиж страны стоил неизмеримо дороже. Сегодня сокращение расходов «по всем фронтам» стало общемировым трендом. Топливо составляет всего 0,2…0,3% от стоимости всей ракеты-носителя, но кроме стоимости топлива важен еще такой параметр, как его доступность. А здесь уже есть вопросы. За последние 50 лет список жидких горючих, широко использующихся в ракетно-космической отрасли мало изменился. Давайте же их перечислим: керосин, водород и гептил. Каждое из них имеет свои особенности и по-своему интересно, но у всех есть хотя бы один серьёзный недостаток. Вкратце рассмотрим каждое из них.

Керосин

Начал применяться ещё в 50-х годах и остаётся востребован и по сей день - именно на нём летают наша Ангара и Falcon 9 от SpaceX . Обладает множеством преимуществ, среди которых: высокая плотность, низкая токсичность, обеспечивает высокий удельный импульс, пока что приемлемая цена. Но производство керосина сегодня сопряжено с большими трудностями. Например, ракеты Союз, которые делают в Самаре, сейчас летают на искусственно созданном горючем, потому что изначально для создания керосина для этих ракет использовались только определенные сорта нефти из конкретных скважин. В основном это нефть Анастасиевско-Троицкого месторождения в Краснодарском крае. Но нефтяные скважины истощаются, и ныне используемый керосин является смешением композиций, которые добываются из нескольких скважин. Заветную марку РГ-1 получают с помощью дорогостоящей перегонки. По оценкам экспертов, проблема дефицита керосина будет только усугубляться.

«Ангара 1.1» на керосиновом двигателе РД-193

Водород

Сегодня водород, наряду с метаном, является одним из самых перспективных ракетных горючих. На нём летает сразу несколько современных ракет и разгонных блоков. В паре с кислородом он (после фтора) выдаёт самый высокий удельный импульс и для использования в верхних ступенях ракеты (или разгонных блоках) подходит идеально. Но чрезвычайно низкая плотность не позволяет в полной мере использовать его для первых ступеней ракет. Есть у него ещё один недостаток - высокая криогенность. Если ракета заправлена водородом, то он находится при температуре около 15 кельвинов (-258 по Цельсию). Это приводит к дополнительным затратам. Если сравнивать в керосином, то доступность водорода достаточно высока и его получение не является проблемой.

«Delta-IV Heavy» на водородных двигателях RS-68A

Гептил

Он же НДМГ или несимметричный диметилгидразин. У этого горючего всё ещё остаются сферы применения, но оно постепенно отходит на задний план. И причиной тому его высокая токсичность. Он обладает почти такими же, как керосин энергетическими показателями и является высококипящим компонентом (хранение при комнатной температуре) и, поэтому, в советское время использовался достаточно активно. Например, ракета Протон летает на высокотоксичной паре гептил+амил, каждый из которых способен убить человека, вдохнувшего по неосторожности их пары. Использование таких топлив в современное время неоправдано и является неприемлемым. Горючее находит применение в спутниках и межпланетных зондах, где оно, к сожалению, незаменимо.

«Протон-М» на гептиловых двигателях РД-253

Метан как альтернатива

Но есть ли топливо, которое удовлетворит всех и будет стоить дешевле всех? Возможно, это метан. Тот самый голубой газ, на котором некоторые из вас сегодня готовили пищу. Предлагаемое горючее является перспективным, активно осваивается другими отраслями промышленности, обладает более широкой сырьевой базой по сравнению с керосином и низкой стоимостью - это является важным моментом, учитывая прогнозируемые проблемы производства керосина. Метан как по плотности, так и по эффективности находится между керосином и водородом. Способы получения метана многочисленны. Главный источник метана природный газ, который состоит на 80..96% из метана. Остальное - это пропан, бутан и другие газы того же ряда, которые можно вообще не удалять, они очень схожи по свойствам с метаном. Другими словами, можно просто сжижать природный газ и использовать его как ракетное топливо. Метан можно получать и из других источников, например, переработкой отходов животноводства. Возможность использования метана в качестве ракетного топлива рассматривается уже на протяжении десятков лет, однако сейчас есть только стендовые варианты и экспериментальные образцы таких двигателей. Например, в химкинском НПО «Энергомаш» исследования в части использования сжиженного газа в двигателях велись с 1981 года. Прорабатываемая сейчас в «Энергомаше» концепция предусматривает разработку однокамерного двигателя тягой в 200 т на топливе «жидкий кислород - сжиженный метан» для первой ступени перспективного носителя легкого класса. Космическая техника ближайшего будущего обещает быть многоразовой. И тут открывается ещё одно преимущество метана. Он криогенный, а, значит, достаточно нагреть двигатель хотя бы до температуры -160 по Цельсию (а лучше выше) и двигатель сам освободится от компонентов топлива. По мнению специалистов он более всего подходит для создания многоразовых ракет-носителей. Вот что о метане думает главный конструктор НПО «Энергомаш» Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Ещё один довод в пользу использования метана - возможность добывать его на астероидах, планетах и их спутниках, обеспечивая возвращаемые миссии топливом. Там намного легче добывать метан, чем керосин. Естественно, о возможности привозить топливо с собой не может быть и речи. Перспектива таких дальних миссий, весьма отдалённая, но некоторые работы уже ведутся.

Будущее, которое так и не наступило

Так почему же метан в России так и не стал практически используемым горючим? Ответ достаточно прост. С начала 80-х в СССР, а потом и в России не было создано ни одного нового ракетного двигателя. Все российские «новинки» - это модернизация и переименование советского наследия. Единственный честно созданный комплекс - «Ангара» - с самого начала планировался как керосиновый транспорт. Его переделка обойдётся в копеечку. Вообще, Роскосмос постоянно отклоняет метановые проекты потому, что там связывают «добро» на хотя бы один подобный проект с «добром» на полную перестройку отрасли с керосина и гептила на метан, что считается долгим и дорогостоящим мероприятием.

Двигатели

На данный момент есть несколько компаний, заявляющих о скором использовании метана в своих ракетах. Двигатели, которые создаются:

FRE-1 /

В общем случае нагрев рабочего тела присутствует как составляющая рабочего процесса теплового ракетного двигателя. Причем наличие источника теплоты - нагревателя формально обязательно (в частном случае его тепловая мощность может равняться нулю). Тип его можно характеризовать видом энергии, переходящей в теплоту. Таким образом получаем признак классификации, по которому тепловые ракетные двигатели по виду энергии, преобразуемой в тепловую энергию рабочего тела, делятся на электрические, ядерные (рис.10.1.) и химические (рис 13.1, уровень 2).

Схема, конструкция и достижимые параметры ракетного двигателя на химическом топливе во многом определяются агрегатным состоянием ракетного топлива. Ракетные двигатели на химическом топливе (в зарубежной литературе иногда называемые химическими ракетными двигателями) по этому признаку делятся на:

жидкостные ракетные двигатели - ЖРД, компоненты топлива которых в состоянии хранения на борту - жидкость (рис. 13.1, уровень 3; фото, фото),

ракетные двигатели твердого топлива - РДТТ (рис. 1.7, 9.4, фото, фото),

гибридные ракетные двигатели - ГРД, компоненты топлива которых находятся на борту в разных агрегатных состояниях (рис. 11.2).

Очевидным признаком классификации двигателей на химическом топливе является число компонентов ракетного топлива.

Например, ЖРД на однокомпонентном или на двухкомпонентном топливе, ГРД на трехкомпонентном топливе (по зарубежной терминологии - на трибридном топливе) (рис. 13.1, уровень 4).

По конструктивным признакам возможна классификация ракетных двигателей с выделением десятков рубрик, но основные отличия в выполнении целевой функции определяются схемой подачи компонентов в камеру сгорания. Наиболее характерна классификация по этому признаку ЖРД.

Классификация ракетных топлив.

РТ подразделяются на твердые и жидкие. Твердые ракетные топлива имеют ряд преимуществ перед жидкими, они длительно хранятся, не воздействуют на оболочку ракеты, не представляют опасности для работающего с ним персонала в связи с низкой токсичности.

Однако взрывной характер их горения создает трудности в их применении.

К твердым ракетным топливам относятся баллистные и кордитные пороха на основе нитроцеллюлозы.

Жидкостный реактивный двигатель, идея создания которого принадлежит К.Э.Циолковскому, наиболее распространен в космонавтике.

Жидкие РТ могут быть однокомпонентными и двухкомпонентными (окислитель и горючие).

К окислителям относятся: азотная кислота и окислы азота (двуокись, четырехокись), перекись водорода, жидкий кислород, фтор и его соединения.

В качестве горючего используется керосины, жидкий водород, гидразины. Наиболее широко используется гидразин и несимметричный диметилгидразин (НДМГ).

Вещества, входящие в состав жидких РТ обладают высокой агрессивностью и токсичностью к человеку. Поэтому перед медицинской службой стоит проблема проведения профилактических мероприятий по защите личного состава от острых и хронических отравлений КРТ, организации оказания неотложной помощи при поражениях.

В связи с этим и изучаются патогенез, клиника поражений, разрабатываются средства оказания неотложной помощи и лечения пораженных, создаются средства защиты кожи и органов дыхания, устанавливаются ПДК различных КРТ и необходимые гигиенические нормы.

Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД.

К преимуществам ЖРД можно отнести следующие:

Самый высокий удельный импульс в классе химических ракетных двигателей (свыше 4 500 м/с для пары кислород-водород, для керосин-кислород - 3 500 м/с).

Управляемость по тяге: регулируя расход топлива, можно изменять величину тяги в большом диапазоне и полностью прекращать работу двигателя с последующим повторным запуском. Это необходимо при маневрировании аппарата в космическом пространстве.

При создании больших ракет, например, носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твёрдотопливными двигателями (РДТТ). Во-первых, за счёт более высокого удельного импульса, а во-вторых за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подается в камеру сгорания с помощью насосов. За счет этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими. В РДТТ контейнер топлива является одновременно и камерой сгорания, и должен выдерживать высокое давление (десятки атмосфер), а это влечёт за собой увеличение его веса. Чем больше объём топлива на ракете, тем больше размер контейнеров для его хранения, и тем больше сказывается весовое преимущество ЖРД по сравнению с РДТТ, и наоборот: для малых ракет наличие турбонасосного агрегата сводит на нет это преимущество.

Недостатки ЖРД:

ЖРД и ракета на его основе значительно более сложно устроены, и более дорогостоящи, чем эквивалентные по возможностям твёрдотопливные (несмотря на то, что 1 кг жидкого топлива в несколько раз дешевле твёрдого). Транспортировать жидкостную ракету необходимо с бо́льшими предосторожностями, а технология подготовки её к пуску более сложна, трудоемка и требует больше времени (особенно при использовании сжиженных газов в качестве компонентов топлива), поэтому для ракет военного назначения предпочтение в настоящее время оказывается твёрдотопливным двигателям, ввиду их более высокой надёжности, мобильности и боеготовности.

Компоненты жидкого топлива в невесомости неуправляемо перемещаются в пространстве баков. Для их осаждения необходимо применять специальные меры, например, включать вспомогательные двигатели, работающие на твёрдом топливе или на газе.

В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:

Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).

Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (Вояджер, Галилео).

омпоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты (см. Формула Циолковского), которые при недостаточно высоком значении удельного импульса могут оказаться нереальными. В таблице 1 приведены основные характеристики некоторых сочетаний компонентов жидкого топлива.

Помимо удельного импульса при выборе компонентов топлива, решающую роль могут сыграть и другие показатели свойств топлива, в том числе:

Плотность, влияющая на размеры баков компонентов. Как следует из табл. 1, водород является горючим, с самым большим удельным импульсом (при любом окислителе), однако он обладает крайне низкой плотностью. Поэтому первые (самые большие) ступени ракет-носителей обычно используют другие (менее эффективные, но более плотные) виды горючего, например, керосин, что позволяет уменьшить размеры первой ступени до приемлемых. Примерами такой «тактики» служат ракета Сатурн-5, первая ступень которой использует компоненты кислород/керосин, а 2-я и 3-я ступени - кислород/водород, и система Спейс Шаттл, в которой в качестве первой ступени использованы твёрдотопливные ускорители.

Температура кипения, которая может накладывать серьёзные ограничения на условия эксплуатации ракеты. По этому показателю компоненты жидкого топлива подразделяют на криогенные - охлаждённые до крайне низких температур сжиженные газы, и высококипящие - жидкости имеющие температуру кипения выше 0 °C.

Криогенные компоненты не могут долго храниться, и транспортироваться на большие расстояния, поэтому они должны изготовляться (по крайней мере сжижаться) на специальных энергоёмких производствах, находящихся в непосредственной близости от места старта, что делает пусковую установку совершенно немобильной. Помимо этого, криогенные компоненты обладают и другими физическими свойствами, предъявляющими дополнительные требования к их использованию. Например, наличие даже незначительного количества воды или водяного пара в ёмкостях со сжиженными газами приводит к образованию очень твёрдых кристаллов льда, которые при попадании в топливную систему ракеты воздействуют на её части как абразивный материал и могут стать причиной тяжёлой аварии. За время многочасовой подготовки ракеты к старту на ней намерзает большое количество инея, превращающегося в лёд, и падение его кусков с большой высоты представляет опасность для персонала, занятого в подготовке, а также для самой ракеты и стартового оборудования. Сжиженные газы после заправки ими ракеты начинают испаряться, и до момента старта их нужно непрерывно пополнять через специальную систему подпитки. Избыток газа, образующегося при испарении компонентов, необходимо отводить таким образом, чтобы окислитель не смешивался с горючим, образуя взрывчатую смесь.

Высококипящие компоненты гораздо более удобны при транспортировке, хранении и оперировании с ними, поэтому в 50е годы ХХ в они вытеснили криогенные компоненты из области военного ракетостроения. В дальнейшем эта область всё в большей степени стала заниматься твёрдым топливом. Но при создании космических носителей криогенные топлива пока сохраняют своё положение за счёт высокой энергетической эффективности, а для выполнения маневров в космическом пространстве, когда топливо должно сохраняться в баках месяцами, а то и годами, наиболее приемлемыми являются высококипящие компоненты. Иллюстрацией такого «разделения труда» могут служить ЖРД, задействованные в проекте Аполлон: все три ступени ракеты-носителя Сатурн-5 используют криогенные компоненты, а двигатели лунного корабля, предназначенные для коррекции траектории и для маневров на окололунной орбите, - высококипящие несимметричный диметилгидразин и тетраоксид диазота.

Химическая агрессивность. Этим качеством обладают все окислители. Поэтому наличие в баках, предназначенных для окислителя, даже незначительных количеств органических веществ (например, жировых пятен, оставленных человеческими пальцами) может вызвать возгорание, вследствие которого может загореться материал самого бака (алюминий, магний, титан и железо очень энергично горят в среде ракетного окислителя). Из-за агрессивности окислители, как правило, не используются в качестве теплоносителей в системах охлаждения ЖРД, а в газогенераторах ТНА, для снижения тепловой нагрузки на турбину рабочее тело перенасыщается горючим, а не окислителем. При низких температурах жидкий кислород является, пожалуй, самым безопасным окислителем, потому, что альтернативные окислители, такие как тетраоксид диазота или концентрированная азотная кислота вступают в реакцию с металлами, и хотя они являются высококипящими окислителями, которые могут подолгу храниться при нормальной температуре, время службы баков, в которых они находятся, ограничено.

Токсичность компонентов топлива и продуктов их горения является серьёзным ограничителем их использования. Например, фтор, как следует из табл.1., как окислитель, более эффективен, чем кислород, однако в паре с водородом он образует фтороводород - вещество крайне токсичное и агрессивное, и выброс нескольких сотен, тем более, тысяч тонн такого продукта сгорания в атмосферу при запуске большой ракеты, сам по себе является крупной техногенной катастрофой, даже при удачном запуске. А в случае аварии, и разлива такого количества этого вещества, ущерб не поддаётся учёту. Поэтому фтор не используется в качестве компонента топлива. Токсичными являются и тетраоксид азота, азотная кислота и несимметричный диметилгидразин. В настоящее время предпочитаемым (с экологической точки зрения) окислителем является кислород, а горючим - водород, за которым следует керосин.

Ракетное топливо

НЕМНОГО ТЕОРИИ Из школьного курса физики (закон сохранения количества движения) известно, что если от покоящегося тела массой М отделится масса m со скоростью V то оставшаяся часть тела массой М-m будет двигаться со скоростью m/(M-m) x V в противоположном направлении. Значит, чем больше отбрасываемая масса и ее скорость,тем большую ско- рость приобретет оставшаяся часть массы т.е. тем больше будет сила приводящая ее в движение. Для работы ракетного двигателя (РД), как и любого реактивного, необходим источник энергии (топливо), рабочее тело (РТ) которое обеспечивает аккумулирование энергии источника ее перенос и преобразование) ,устройство в котором энергия пере- дается РТ и устройство в котором внутренняя энергия РТ преобразуется в кинетичес- кую энергию струи газов и передается ракете в виде силы тяги. Известны химические и нехимические топлива: у первых (жидкостные ракетные дви- гатели - ЖРД и ракетные двигатели твердого топлива - РДТТ) необходимая для работы двигателя энергия выделяется в результате химических реакций, а образующиеся при этом газообразные продукты служат рабочим телом, у вторых для нагрева рабочего тела используются другие источники энергии (например ядерная энергия). Эффективность РД, как и эффективность топлива измеряется его удельным импуль- сом. Удельный импульс тяги (удельная тяга), определяемый как отношение силы тяги к секундному массовому расходу рабочего тела. Для ЖРД и РДТТ расход рабочего тела совпадает с расходом топлива и удельный импульс является величиной обратной удель- ному расходу топлива. Удельный импульс характеризует эффективность РД - чем он больше тем меньше топлива (в общем случае - рабочего тела) расходуется на создание единицы тяги. В системе СИ удельный импульс измеряется в м/сек и практически сов- падает по величине со скоростью реактивной струи. В технической системе единиц (другое ее наименование МКГСС что значит: Метр - КилоГрамм Силы - Секунда), широко применявшейся в СССР, килограмм массы был производной единицей и определялся как масса которой сила в 1 кгс сообщает ускорение 1 м/сек за сек. Она называлась «техническая единица массы» и составляла 9,81 кг. Такая единица была неудобной, поэтому вместо массы использовали вес, вместо плотности - удельный вес и т.д. В ракетной технике при расчете удельного импульса также использовали не массовый а весовой расход топлива. В результате уделный импульс (в системе МКГСС) измерялся в секундах (по величине он в 9,81 раз меньше удельного «массового» импульса). Величина удельного импульса РД обратно пропорциональна квадратному корню мо- лекулярной массы рабочего тела и прямо пропорциональна квадратному корню из зна- чения температуры рабочего тела перед соплом. Температура рабочего тела определя- ется теплотворной способностью топлива. Максимальное ее значение для пары берил- лий+кислород составляет 7200 ккап/кг. что ограничивает величину максимального удельного импульса ЖРД величиной не более 500 сек. Величина удельного импульса зависит от термического коэффициента полезного действия РД - отношения кинетичес- кой энергии, сообщенной в двигателе рабочему телу, ко всей теплотворной способ- ности топлива. Преобразование теплотворной способности топлива в кинетическую энергию истекающей струи в двигателе происходит с потерями поскольку часть тепла уносится с истекающим рабочим телом, часть из-за неполного сгорания топлива не выделяется вовсе. Наиболее высокий удельный импульс имеют электрореактианые дви- гатели. У плазменного ЭРД он доходит до 29000 сек. Максимальный импульс серийных российских двигателей РД-107 составляет 314 сек, Характеристики РД на 90% определяются применяемым топливом. Ракетное топливо - вещество (одно или несколько), представляющих собой источник энергии и РТ для РД. Оно должно удовлетворять следующим основным требованиям: иметь высокий уд.импульс, высокую плотность, требуемое агрегатное состояние компонентов в условиях эксплуа- тации, должно быть стабильным, безопасным в обращении, нетоксичным, совместимым с конструкционными материалами, иметь сырьевые ресурсы и др. Большинство существу- ющих РД работает на химическом топливе. Основная энергетическая характеристика (уд. импульс) определяется количеством выделившейся теплоты (теплотворностью топлива) и химическим составом продуктов реакции, от которого зависит полнота преобразования тепловой энергии в кинетическую энергию потока (чем ниже молекулярная масса, тем выше уд.импульс). По числу раздельно хранимых компонентов химические ракетные топ- лива делятся на одно-(унитарные), двух-, трёх- и многокомпонентные, по агрегатному состоянию компонентов - на жидкие, твёрдые, гибридные, псевдожидкие, желеобразные. Однокомпонентные топлива - соединения типа гидразина N 2 H 4 , перекиси водорода Н 2 О 2 в камере РД распадаются с выделением большого количества теплоты и газообразных продуктов, обладают невысокими энергетическими свойствамивами. Например 100%-я перекись водорода имеет уд.импульс 145с. и применяется как вспомогательные топлива для систем управления и ориентации, приводов турбонасосов РД. Гелеобразные топлива - обычно загущенное солями высокомолекулярных органических кислот или специальными добавками горючее (реже окислитель). Повышение уд.импульса ракетных топлив дости- гается добавлением порошков металлов (Al и др.). Например "Сатурн-5" сжигает за время полета 36т. алюминиевого порошка. Наибольшее применение получили 2-х компо- нентные жидкие и твёрдые топлива. ЖИДКОЕ ТОПЛИВО Двухкомпонентное жидкое топливо состоит из окислителя и горючего. К жидким топливам предъявляются следующие специфические требования: возможно более широкий температурный интервал жидкого состояния, пригодность, по крайней мере, одного из компонентов для охлаждения жидкостного РД (термическая стабильность, высокие тем- пература кипения и теплоёмкость), возможность получения из основных компонентов генераторного газа высокой работоспособности, минимальная вязкость компонентов и малая зависимость её от температуры. Для улучшения характеристик в состав топлива вводятся различные присадки (металлы, например Be и Al для повышения уд.импульса, ингибиторы коррозии, стабилизаторы, активаторы воспламенения, вещества понижающие температуру замерзания). В качестве горючего используются керосин (лигроино-кероси- новые и керосино-газойлевые нефтяные фракции с диапазоном кипения 150-315°С), жид- кий водород, жидкий метан (CH 4), спирты (этиловый, фурфуриловый); гидразин (N 2 H 4), и его производные (диметилгидразин), жидкий аммиак (NH 3), анилин, метил-, диметил- и триметиламины и т.д. В качестве окислителя применяют: жидкий кислород, концентри- рованную азотную кислоту (HNO 3), азотный тетраксид (N 2 O 4), тетранитроме- тан; жидкие фтор, хлор и их соединения с кислородом и др. При подаче в камеру сго- рания компоненты топлива могут самовоспламеняться (конц.азотная кислота с анилином, азотный тетроксид с гидразином и др.)или нет. Применение самовоспламеняющихся топ- лив упрощает конструкцию РД и позволяет наиболее просто осуществлять многоразовые запуски. Максимальный уд.импульс имеют пары водород-фтор(412с), водород-кислород (391с). С точки зрения химии идеальный окислитель – жидкий кислород. Он использо- вался в первых балистических ракетх ФАУ,ее американских и советских копиях. Но его температура кипения (-183 0 С) не устраивала военных. Требуемый диапазон рабочих температур от –55 0 С до +55 0 С. Азотная кислота –другой очевидный окислитель для ЖРД больше устраивала военных. Она имеет высокую плотность,невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасна. Главное ее преимущество перед жидким кис- лородом в высокой температуре кипения, а следовательно в возможности неограниченно долго храниться без всякой теплоизоляции. Но азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой – атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвы- чайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали мед- ленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества,всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержаве- ющей стали в десять раз. Для повышения уд.импульса в кислоту добавляют двуокись азота (NO 2). Это газ бурого цвета, с резким запахом. При охлаждении ниже 21 0 С он сжижается при этом образуется четырехокись азота (N 2 O 4), или азотный тетраксид (АТ). При атмосферном давлении АТ кипит при температуре +21 0 С, а при –11 0 С замер- зает. Газ состоит в основном из молекул NO 2 , жидкость из смеси NO 2 и N 2 O 4 , а в твердом веществе остаются одни только молекулы тетроксида. Кроме всего прочего добавка АТ в кислоту связывает попадающую в окислитель воду, что уменьшает корро- зионную активность кислоты, увеличивается плотность раствора, достигая максимума при 14% растворенного АТ. Эту концентрацию использовали американцы для своих бое- вых ракет. Наши для получения максимального уд. импульса использовали 27% раствор АТ. Такой окислитель получил обозначение АК-27. Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Пер- вым широко использовавшимся горючим был спирт(этиловый), применявшийся на первых советских ракетах Р-1, Р-2, Р-5 ("наследство" ФАУ-2). Кроме низких энергетических показателей военных очевидно не устраивала низкая стойкость личного состава к «от- равлению» таким горючим. Военных больше всего устраивал продукт перегонки нефти,но проблема была в том, что такое топливо не самовоспламеняется при контакте с азот- ной кислотой. Этот недостаток обошли применением пускового горючего. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно «Тонка-250» (в СССР оно именовалось ТГ-02). Лучше всего воспламеняются с азот- ной кислотой вещества,имеющие в составе, кроме углерода и водорода еще азот. Таким веществом, обладающим высокими энргетическими характеристиками, был гидразин (N 2 H 4). По физическим свойствам он очень похож на воду (плотность на несколько процентов больше, температура замерзания +1,5 0 С, кипения +113 0 С, вязкость и все прочее – как у воды). Но военных не устраивала высокая температура замерзания (выше,чем у воды). В СССР был разработан способ получения несимметричного диметилгидразина (НДМГ), а американцы использовали более простой процесс получения монометилгидразин. Обе эти жидкости, были чрезвычайно ядовиты зато менее взрывоопасны, меньше впитывали водя- ные пары, были термически более стойкими чем гидразин. Но вот температура кипения и плотность по сравнению с гидразином понизились. Несмотря на некоторые недостатки новое топливо вполне устраивало и конструкторов, и военных. НДМГ имеет и другое, «несекретное» название - «гептил». «Аэрозин-50» использовавшийся американцами на своих жидкостных ракетах представляет собой смесь гидразина и НДМГ, что было след- ствием изобретения технологического процесса,в котором они получались одновременно. После того как баллистические ракеты стали размещаться в шахтах, в герметичном контейнере с системой термостатирования требования к диапазону рабочих температур ракетного топлива были снижены. В результате от азотной кислоты отказались,перейдя на чистый АТ так же получивший несекретное наименование – «амил». Давление наддува в баках повышало температуру кипения до приемлемой величины. Коррозия баков и тру- бопроводов с при использовании АТ уменьшилась настолько, что стало возможным хра- нить ракету заправленной на протяжении всего срока боевого дежурства. Первыми раке- тами использующими в качестве окислителя АТ стали УР-100 и тяжелая Р-36. Они могли стоять заправленными до 10 лет подряд. Основные характеристики двухкомпонентных жидких топлив при оптимальном соотношении компонентов (давление в камере сгорания, 100 кгс/см2, на срезе сопла 1 кгс/см2) Окислитель Горючее Теплотвор- Плотность Температура Уд.импульс ность топлива*, г /см 2 * в камере в пустоте, ккал/кг сгорания, К сек Азотная Керосин 1460 1,36 2980 313 к-та (98%) ТГ-02 1490 1,32 3000 310 Анилин(80%)+ фурфуриловый 1420 1.39 3050 313 спирт (20%) Кислород Спирт(94%) 2020 0,39 3300 255 (Жидкий) Водород ж. 0,32 3250 391 Керосин 2200 1,04 3755 335 НДМГ 2200 1,02 3670 344 Гидразин 1,07 3446 346 Аммиак ж. 0,84 3070 323 АТ Керосин 1550 1,27 3516 309 НДМГ 1,195 3469 318 Гидразин 1,23 3287 322 Фтор Водород ж. 0,62 4707 412 (жидкий) Гидразин 2230 1,31 4775 370 * отношение суммарной массы окислителя и горючего к их объёму. ТВЕРДОЕ ТОПЛИВО Твердое топливо подразделяется на баллиститное прессованные - нитроглицерино- вые пороха) представляющее собой гомогенную смесь компонентов (в современных мощных РД не применяется) и смесевое представляющее собой гетерогенные смеси окис- лителя, горючего-связующего (способствующего образованию монолитного топливного блока) и различных добавок (пластификатора, порошки металлов и их гидридов, отвер- дителя и т.д.). Твердотопливные заряды изготавливаются в виде канальных шашек, горящих по внешней либо внутренней поверхности. Основные специфические требования, предъявляемые к твёрдым топливам: равномерность распределения компонентов и, след- овательно, постоянство физико-химических и энергетических свойств в блоке, устой- чивость и закономерность горения в камере РД, а также комплекс физико-механических свойств, обеспечивающих работоспособность двигателя в условиях перегрузок, пере- менной температуры, вибраций. По уд.импульсу (около 200с.) твёрдое топливо усту- пает жидкому, т.к. из-за химической несовместимости не всегда удаётся использовать в составе твёрдого топлива энергетически эффективные компоненты. Недостатком твер- дого топлива является подверженость "старению" (необратимому изменению свойств вследствие происходящих в полимерах химических и физических процессов). Американские ракетчики быстро отказались от жидкого топлива и для боевых ракет предпочли твердое смесевое,работы по созданию которого в США проводились еще с середины 40-х годов, что позволило уже в 1962г. принять на вооружение первую твердотопливную МБР «Минитмен-1». В нашей стране широкомасштабные исследования начались со значительным опозданием. Постановлением от 20 ноября 1959г. предусмат- ривалось создание трёхступенчатой ракеты РТ-1 с твердотопливными ракетными двига- телями (РДТТ) и дальностью 2500км. Поскольку к тому моменту практически отсутство- вали научная, технологическая и производственная базы по смесевым зарядам альтерна- тивы использованию баллиститных твердых топлив не было. Максимально допустимый по технологии диаметр пороховых шашек изготавливаемых методом проходного прессования не превышал 800мм. Поэтому двигатели каждой ступени имели пакетную компоновку из 4 и 2 блоков у первой и второй ступеней соответственно. Вкладной пороховой заряд горел по внутреннему цилиндрическому каналу, торцам и поверхности 4-х продольных щелей, расположенных в передней части заряда. Такая форма поверхности горения обес- печивала необходимую диаграмму давления в двигателе. Ракета имела неудовлетвори- тельные характеристики так, при стартовой массе 29.5т. "Минитмен-1" имел предель- ную дальность 9300км, а у РТ-1 эти характеристики составляли, соответственно 34т. и 2400км. Основной причиной отставания ракеты РТ-1 являлось использование баллист- ного пороха. Для создания МБР на твердом топливе, по своим характеристикам прибли- жающейся к "Минитмен-1", было необходимо использование смесевых топлив, обеспечи- вающих более высокие энергетические и лучшие массовые характеристики двигателей и ракеты в целом. В апреле 1961г. вышло Постановление Правительства о разработке МБР на твердом топливе - РТ-2, было проведено установочное совещание и подготовлена программа "Нейлон-С" по разработке смесевых топлив с уд.импульсом 235с. Эти топ- лива должны были обеспечить возможность изготовления зарядов массой до 40т. мето- дом литья в корпус двигателя. В конце 1968г. ракета была принята на вооружение, но требовала дальнейшего совершенствования. Так, смесевое топливо формовалось в отдельных прессформах, затем заряд вкладывался в корпус, а зазор между зарядом и корпусом заливался связующим веществом. Это создавало определенные трудности при изготовлении двигателя. Ракета РТ-2П, имела твёрдое топливо ПАЛ-17/7 на основе бутил-каучука, обладающего высокой пластичностью, не имеющего заметного старения и растрескивания в процессе хранения, при этом топливо заливалось прямо в корпус дви- гателя, затем производилась его полимеризация и формование необходимых поверхнос- тей горения заряда. По своим летно-техническим характеристикам РТ-2П приближалась к ракете "Минитмен-3". Первыми нашли широкое применение в РДТТ смесевые топлива на основе перхлората калия и полисульфида. Значительное увеличение уд. импульса РДТТ произошло после того, как вместо перхлората калия стал применяться перхлорат аммония, а вместо полисульфидных - полиурстаноеые, а затем полибутадиеновые и другие каучуки, и в состав топлива было введено дополнительное горючее - порошкообразный алюминий. Почти все современные РДТТ содержат заряды, изготовленные из перхлората аммония, алюминия и полимеров бутадиена (СН 2 =СН-СН=СН 2). Готовый заряд имеет вид твердой резины или пластика. Его подвергают тщательному контролю на сплошность и однород- ность массы, прочное сцепление топлива с корпусом и т.д. Трещины и поры в заряде, как и отслоения от корпуса, недопустимы так как могут привести к нерасчетному уве- личению тяги РДТТ (вследствие увеличения горящей поверхности), прогарам корпуса и даже взрывам. Характерный состав смесевого топлива, используемого в современных мощных РДТТ: окислителя (как правило перхлорат аммония NH 4 C1O 4) 60-70%, горючего- связующего (бутилкаучук, нитрильные каучуки, полибутадиены) 10-15%, пластификатора 5-10%, металла (порошки Al,Be,Mg и их гидриды) 10-20%, отвердителя 0,5-2,0% и ката- лизатора горения 0,1-1,0%.(окись железа) В современных космических РДТТ сравнительно редко применяется и модифицирован- ное двухосновное, или смесевое двухосновное топливо. По составу оно является проме- жуточным между обычным баллистным двухосновным (двухосновные пороха – бездымные пороха в которых два основных компонента: нитроцеллюлоза - чаще всего в виде пирок- силина, и нелетучий растворитель – чаще всего нитроглицерин) топливом и смесевым. Двухосновное смесевое топливо содержит обычно кристаллический перхлорат аммония (окислитель) и порошкообразный алюминий (горючее), связанные при помощи нитроцел- люлозно-нитроглицерииовой смеси. Вот типичный состав модифицированного двухоснов- ного топлива: перхлорат аммония -20,4%, алюминий - 21,1%, нитроцеллюлоза - 21,9%, нитроглицерин - 29,0%, триацетин (растворитель) - 5,1%, стабилизаторы - 2,5%. При той же плотности, что и смесевое полибутадиеновоё топливо, модифицированное двух- основное характеризуется несколько большим удельным импульсом. Недостатками же его являются более высокая температура горения, большая стоимость, повышенная взры- воопасность (склонность к детонации). С целью увеличения удельного импульса как в смесевые, так и в модифицированные двухосновные топлива могут вводиться сильно взрывчатые кристаллические окислители например гексоген. ГИБРИДНОЕ ТОПЛИВО В гибридном топливе компоненты находятся в различных агрегатных состояниях. Горючим могут служить: отвержденные нефтепродукты, N 2 H 4 , полимеры и их смеси с порошками - Al, Be, BeH 2 , LiH 2 , окислителями - HNO 3 , N 2 O 4 , H 2 O 2 ,FC1O 3 , C1F 3 , О 2 ,F 2 , OF 2 . По удельному импульсу эти топлива занимают промежуточное положение между жид- кими и твёрдыми. Максимальный уд.импульс имеют топлива: BeH 2 -F 2 (395с), ВеН 2 -Н 2 О 2 (375с), ВеН 2 -О 2 (371с). В основе гибридного топлива, разработанного Стэнфордским университом и NASA, лежит парафин. Он нетоксичен и является экологи- чески чистым (при сгорании образует только углекислый газ и воду) его тяга регули- руется в широких пределах, возможен и повторный запуск. Двигатель имеет довольно простое устройство, сквозь парафиновую трубу, расположенную в камере сгорания, прокачивается окислитель (газообразный кислород), при зажигании и дальнейшем разо- греве поверхностный слой топлива испаряется, поддерживая горение. Разработчикам удалось добиться высокой скорости горения и таким образом решить основную проблему, тормозившую ранее использование подобных двигателей в космических ракетах. Хорошие перспективы может иметь применение металлического горючего. Одним из наиболее под- ходящих для этой цели металлов является литий. При сгорании 1 кг. этого металла выделяется в 4,5 раза больше энергии чем при окислении керосин жидким кислородом. Большей теплотворностью может похвастать лишь бериллий. В США опубликованы патенты на твердое ракетное топливо, содержащее 51-68% металлического лития.

Топливо для жидкостных ракетных двигателей, применяемых в составе космических разгонных блоков и ступеней ракетоносителей, содержит горючее на основе метана и окислитель, при этом в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. Применение предлагаемого топлива на ракетоносителях среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции ракетоносителя по сравнению с применением топлива метан + кислород на ~2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин + кислород масса выводимого полезного груза увеличится на ~ 7,5%.

Предлагаемое топливо предназначено для использования в жидкостных ракетных двигателях (ЖРД), применяемых в составе космических разгонных блоков (РБ) и ступеней ракетоносителей (РН). Аналогом данного топлива является топливо керосин+кислород . Жидкий кислород в настоящее время является одним из наиболее распространенных окислителей в топливах ЖРД. Это связано с тем, что жидкий кислород является экологически безопасным компонентом топлива. При этом он дешев, не токсичен, умеренно пожароопасен и обеспечивает достаточно высокие энергетические характеристики топлив. Например, топливо керосин+кислород при давлении в КС 70 ата и геометрической степени расширения сопла 40 обеспечивает удельный пустотный импульс на ~ 8% больший, чем топливо керосин+AT, где в качестве окислителя используется азотный тетраксид. Керосин представляет собой углеводородное горючее, являющееся смесью природных углеводородов, получаемых при перегонке нефти. Получение керосина из природной нефти обусловливает его относительную дешевизну. Кроме того, керосин является малотоксичным веществом, относящимся к 4-ому (низшему) классу опасности, умеренно пожароопасен и обладает достаточно высокой плотностью, что положительно сказывается на его эксплуатационных достоинствах. В целом топливо керосин+кислород, является эффективным топливом с достаточно высокой плотностью ~ 1000 кг/м 3 и достаточно высоким удельным импульсом истечения продуктов его сгорания, что позволяет достаточно эффективно решать существующие задачи, стоящие перед современными средствами выведения. К недостаткам топлива керосин+кислород относятся: относительно большая разница температур эксплуатации жидкого кислорода (~ 90 К) и керосина (~ 290 К), что требует принятия специальных мер, компенсирующих температурные напряжения, возникающие в баке хранения окислителя при заправке его жидким кислородом, и необходимость использования баков хранения компонентов с раздельными днищами и значительной теплоизоляцией между баками. Это ведет к существенному увеличению массы баков хранения компонентов и к увеличению объема, занимаемого баками хранения компонентов топлива в двигательной установке, что также увеличивает массовые затраты на хранение топлива. Прототипом предлагаемого топлива является топливо метан+кислород . Метан является основной составляющей природных газов, поэтому его производство, по оценкам, будет даже дешевле, чем производство керосина. По энергетическим характеристикам это топливо превосходит топливо керосин+кислород: при указанных выше давлениях в КС и геометрической степени расширения сопла удельный импульс топлива метан+кислород будет выше удельного импульса топлива керосин+кислород на ~ 4%. Однако метан даже при температуре 91 К (температура его плавления 90,66 К) обладает низкой плотностью 455 кг/м 3 , при этом плотность топлива метан+кислород всего 830 кг/м 3 , что приводит к увеличению массовых затрат на его хранение ввиду необходимости увеличения объема баков хранения компонентов. Низкая плотность топлива метан+кислород и невозможность переохлаждения кислорда при использовании баков хранения компонентов топлива с совмещенными днищами ведут к тому, что для космических РБ существенно (на 20% по сравнению с керосин+кислород) снижается время возможного хранения топлива в околоземном пространстве. Поскольку температура плавления метана выше температуры кипения кислорода при давлении 1 ата (т.е. выше 90 К), то использование баков хранения компонентов топлива с совмещенными днищами даже для кипящего при 1 ата кислорода (а тем более при использовании переохлажденного кислорода, который кипит при более низком давлении) невозможно без использования межбаковой теплоизоляции. Кроме того, поскольку бак горючего заправлен криогенным метаном, то его надо теплоизолировать от внешних теплопритоков, что дополнительно увеличивает массовые затраты на хранение топлива. Все это ведет к существенному по сравнению с топливом керосин+кислород увеличению массы и габаритов баков хранения топлива метан+кислород, что значительно, а в некоторых случаях вплоть до нуля, снижает эффект, который можно было бы получить от более высокого удельного импульса прототипа. Задачей изобретения является увеличение плотности топлива и, как следствие, массовых затрат на его хранение в топливных баках. Энергетические характеристики топлива при этом не ухудшаются по сравнению с прототипом. Это достигается при применении топлива, содержащего горючее и окислитель, где в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. При указанном содержании метана температура затвердевания такого горючего менее 90 К, т.е. при использовании в качестве окислителя, например, кипящего жидкого кислорода баки окислителя и горючего могут иметь общее днище, не покрытое теплоизоляцией. Кроме того, предлагаемое топливо для указанного интервала мольного соотношения метан - этилен будет иметь плотность от 900 до 970 кг/см 3 , что сравнимо с плотностью топлива керосин+кислород, а с учетом большой теплоемкости горючего в предлагаемом топливе возможное время пребывания космических РБ в околоземном пространстве будет таким же, как при использовании топлива керосин+кислород. При этом проведенные термодинамические расчеты показали, что удельный импульс продуктов истечения предлагаемого топлива будет таким же, как для топлива метан+кислород. Применение предлагаемого топлива на РН среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции РН по сравнению с применением топлива метан+кислород на ~ 2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин+кислород масса выводимого полезного груза увеличится на ~ 7,5%. Метан, как уже отмечалось выше, является основной составляющей природных газов, а этилен является широко распространенным сырьем для химической промышленности (например, при производстве полиэтилена), поэтому производство горючего для такого топлива не потребует создания новых производств и может быть освоено в достаточно короткие сроки. Стоимость предлагаемого топлива по оценкам будет сравнима со стоимостью топлива керосин+кислород. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Основы теории и расчета жидкостных ракетных двигателей /в 2-х книгах/ под ред. В. М. Кудрявцева, изд. 4-е перераб. и доп. - М. "Высшая школа", 1993. - кн.1, стр.130-134. 2. Паушкин Я. М. Химический состав и свойства реактивных топлив. - М. Издательство академии наук СССР, 1958.- 376 с., ил. стр.302. 3. Синярев Г.Б. Жидкостные ракетные двигатели. - М. Государственное издательство оборонной промышленности. 1955. -488 стр., ил. стр.159 - 161. 4. Справочник по физико-техническим основам криогеники. /М.П.Малков.- 3-е изд., перераб. и доп. - М.:Энергоатомиздат, 1985, -432 с., ил. стр.217. 5. Справочник по разделению газовых смесей методом глубокого охлаждения. /И. И. Гельперин. - 2-е изд., перераб. - М. Государственное научно-техническое издательство химической литературы, 1963. - 512 с., ил. стр.232. 6. Термодинамические и теплофизические свойства продуктов сгорания /в 3-х томах/ под ред. В.П. Глушко, - М. Всезоюзный институт научной и технической информации. 1968, т. 2, стр.177-308.

Формула изобретения

Топливо для жидкостных ракетных двигателей, содержащее горючее на основе метана и окислитель, отличающееся тем, что в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%.

Похожие патенты:

Изобретение относится к способу работы двигателя летательного аппарата, действующего по принципу реактивного движения

Изобретение относится к ракетно-космической технике и касается конструкции жидкостных ракетных двигателей (ЖРД), работающих на криогенном топливе, в частности двигателей ракетных блоков и космических аппаратов, использующих в качестве компонентов топлива криогенный окислитель жидкий кислород и углеводородное горючее


© 2024
reaestate.ru - Недвижимость - юридический справочник