21.09.2019

Реактивный двигатель изобретен в году. Основные технические параметры реактивного двигателя. Принцип работы реактивного двигателя


Реактивными двигателями называют такие устройства, которые создают нужную для процесса движения силу тяги преобразованием внутренней энергии горючего в кинетическую энергию реактивных струй в рабочем теле. Рабочее тело стремительно проистекает из двигателя, и по закону сохранения импульса формируется реактивная сила, которая толкает двигатель в противолежащем направлении. Чтобы разогнать рабочее тело может применяться как расширение газов, нагретых самыми разнообразными способами до высоких температур, а также и другими физическими процессами, в частности, ускорением заряженных частиц в электростатическом поле.

Реактивные двигатели сочетают в себе собственно двигатели с движителями. Имеется в виду, что они создают тяговые усилия исключительно взаимодействием с рабочими телами, без опор, либо контактами с остальными телами. То есть обеспечивают сами себе собственное продвижение, при этом промежуточные механизмы не принимают никакого участия. Вследствие этого в основном они используются для того, чтобы приводить в движение воздушные судна, ракеты и, конечно же, космические аппараты.

Что такое тяга двигателя?

Тягой двигателей называют реактивную силу, которая проявляется газодинамическими силами, давлением и трением, приложенными к внутренним и внешним сторонам двигателя.

Тяги различаются на:

  • Внутренние (реактивные тяги), когда не учитывается внешнее сопротивление;
  • Эффективные, учитывающие внешнее сопротивление силовых установок.

Отправная энергия запасается на борту летательных или других аппаратов, оснащенных реактивными двигателями (химическим горючим, ядерным топливом), или может притекать снаружи (например, солнечная энергия).

Как формируется реактивная тяга?

Для формирования реактивной тяги (тяги двигателя), которая используется реактивными двигателями, потребуются:

  • Источники исходной энергии, которые превращаются в кинетическую энергию реактивных струй;
  • Рабочие тела, которые в качестве реактивных струй будут выбрасываться из реактивных двигателей;
  • Сам реактивный двигатель в качестве преобразователя энергии.

Как получить рабочее тело?

Для приобретения рабочего тела в реактивных двигателях могут использоваться:

  • Вещества, отбираемые из окружающей среды (к примеру, вода, либо воздух);
  • Вещества, находящиеся в баках аппаратов или в камерах реактивных двигателей;
  • Смешанные вещества, поступающие из окружающей среды и запасаемые на бортах аппаратов.

Современные реактивные двигатели главным образом используют химическую энергию. Рабочие тела представляют собой смесь раскаленных газов, которые являются продуктами сгорания химического горючего. Когда работает реактивный двигатель, химическая энергия от сгорающих веществ преобразуется в тепловую энергию от продуктов сгорания. В то же время тепловая энергия от горячих газов превращается в механическую энергию от поступательных движений реактивных струй и аппаратов, на которых установлены двигатели.

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Лопатки турбин компрессоров производят сжатие воздуха приблизительно от 30 и более раз, совершают «проталкивания» его (нагнетание) в камеру сгорания (происходит генерирование рабочего тела). Вообще камеры сгорания выполняют к тому же и роли карбюраторов, производя смешивание топлива с воздухом.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Реактивные двигатели снабжены соплами, через которые из них вовне с огромной скоростью вытекают накаленные газы, которые являются продуктами сгорания топлива. В некоторых двигателях газы оказываются в соплах сразу же после камер сгорания. Это относится, например, к ракетным или прямоточным двигателям.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

В противоположность воздушно-реактивным двигателям все компоненты рабочих тел РД находятся на борту аппаратов, оснащенных ракетными двигателями. Отсутствие движителей, взаимодействующих с окружающей средой, а также присутствие всех составляющих рабочих тел на борту аппаратов делают ракетные двигатели пригодными для функционирования в космическом пространстве. Имеется также комбинация ракетных двигателей, представляющих собой некое совмещение двух основных разновидностей.

Кратко об истории реактивного двигателя

Считается, что реактивный двигатель изобрели Ганс фон Охайн и выдающийся немецкий инженер-конструктор Фрэнк Виттл. Первый патент на действующий газотурбинный двигатель получил именно Фрэнк Виттл в 1930 году. Тем не менее, первая рабочая модель была собрана собственно Охайном. В конце лета 1939 года в небе появилось первое реактивное воздушное судно – He-178 (Хейнкель-178), который был снаряжен двигателем HeS 3, разработанным Охайном.

Как устроен реактивный двигатель?

Устройство реактивных двигателей довольно-таки простое и в то же время чрезвычайно сложное. Оно простое по принципу действия. Так, забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину. После чего он там начинает смешиваться с горючим и сгорать. На краю турбины образуется так называемое «рабочее тело» (ранее упоминаемая реактивная струя), которое продвигает летательный или космический аппарат.

При всей простоте, на самом деле это целая наука, ведь в середине таких двигателей рабочий температурный режим может достигать более тысячи градусов по Цельсию. Одной из важнейших проблем в турбореактивном двигателестроении является создание неплавящихся деталей из металлов, которые сами поддаются плавлению.

В начале, перед каждой турбиной всегда располагается вентилятор, засасывающий воздушные массы из окружающей среды в турбины. Вентиляторы обладают большой площадью, а также колоссальной численностью лопастей специальных конфигураций, материалом для которых послужил титан. Сразу за вентиляторами располагаются мощные компрессоры, которые необходимы для нагнетания воздуха под огромным давлением в камеры сгорания. После камер сгорания горящие топливовоздушные смеси направляются в саму турбину.

Турбины состоят из множества лопаток, на которые оказывают давление реактивные потоки, которые и приводят турбины во вращение. Далее турбины вращают валы, на которых «насажены» вентиляторы и компрессоры. Собственно так, система становится замкнутой и нуждается исключительно в подводе топлива и воздушных масс.

Вслед за турбинами потоки направляются в сопла. Сопла реактивных двигателей являются последними, но не самыми последними по своей значимости частями в реактивных двигателях. Они формируют непосредственные реактивные струи. В сопла направляются холодные воздушные массы, нагнетаемые вентиляторами для охлаждения «внутренностей» двигателей. Эти потоки ограничивают манжеты сопел от сверхгорячих реактивных потоков и не позволяют им расплавляться.

Отклоняемый вектор тяги

Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.

Типы реактивных двигателей

Имеется несколько основных разновидностей реактивных двигателей. Так, классическим реактивным двигателем можно назвать авиадвигатель в самолете F-15. Большинство таких двигателей используются преимущественно на истребителях самых разнообразных модификаций.

Двухлопастные турбовинтовые двигатели

В этой разновидности турбовинтовых двигателей мощность турбин через понижающие редукторы направляется для вращения классических винтов. Наличие таких двигателей позволяет большим воздушным суднам осуществлять полеты с максимально приемлемыми скоростями и при этом расходовать меньшее количество авиатоплива. Нормальная крейсерская скорость у турбовинтовых воздушных суден может быть 600-800 км/ч.

Турбовентиляторные реактивные двигатели

Эта разновидность двигателей является более экономичной в семействе двигателей классических типов. Главной отличительной характеристикой в них является то, что на входе ставятся вентиляторы больших диаметров, которые подают воздушные потоки не только для турбин, но и создают довольно-таки мощные потоки вне их. Вследствие этого, можно достичь повышенной экономичности, путем усовершенствования КПД. Они используются на лайнерах и больших воздушных суднах.

Прямоточные воздушно-реактивные двигатели

Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.

Реактивный двигатель - двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Рабочее тело с большой скоростью истекает из двигателя, и, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как расширение газа, нагретого тем или иным способом до высокой термотемпературы (т. н. тепловые реактивные двигатели), так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле (см. ионный двигатель).

Реактивный двигатель сочетает в себе собственно двигатель с движителем, то есть он создает тяговое усилие только за счет взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолетов, ракет и космических аппаратов.

В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй.

Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело.

Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет.

Первый класс – воздушнореактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух.

В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата.

Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа.

Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые.

Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Ее впервые сформулировал русский революционернародоволец Н. И. Кибальчич, который в марте 1881 г., незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов.

H. Е. Жуковский в работах "О реакции вытекающей и втекающей жидкости" (1880е годы) и "К теории судов, приводимых в движение силой реакции вытекающей воды" (1908 г.) впервые разработал основные вопросы теории реактивного двигателя.

Интересные работы по исследованию полета ракеты принадлежат также известному русскому ученому И. В. Мещерскому, в частности в области общей теории движения тел переменной массы.

В 1903 г. К. Э. Циолковский в своей работе "Исследование мировых пространств реактивными приборами" дал теоретическое обоснование полета ракеты, а также принципиальную схему ракетного двигателя, предвосхищавшую многие принципиальные и конструктивные особенности современных жидкостноракетных двигателей (ЖРД). Так, Циолковский предусматривал применение для реактивного двигателя жидкого топлива и подачу его в двигатель специальными насосами. Управление полетом ракеты он предлагал осуществить посредством газовых рулей – специальных пластинок, помещаемых в струе вылетающих из сопла газов.

Особенность жидкостнореактивного двигателя в том, что в отличие от других реактивных двигателей он несет с собой вместе с топливом весь запас окислителя, а не забирает необходимый для сжигания горючего воздух, содержащий кислород, из атмосферы. Это единственный двигатель, который может быть применен для сверхвысотного полета вне земной атмосферы.

Первую в мире ракету с жидкостным ракетным двигателем создал и запустил 16 марта 1926 г. американец Р. Годдард. Она весила около 5 килограммов, а ее длина достигала 3 м. Топливом в ракете Годдарда служили бензин и жидкий кислород. Полет этой ракеты продолжался 2,5 секунды, за которые она пролетела 56 м.

Систематические экспериментальные работы над этими двигателями начались в 30х годах XX века.

Первые советские ЖРД были разработаны и созданы в 1930–1931 гг. в ленинградской Газодинамической лаборатории (ГДЛ) под руководством будущего академика В. П. Глушко. Эта серия называлась ОРМ – опытный ракетный мотор. Глушко применил некоторые новинки, например охлаждение двигателя одним из компонентов топлива.

Параллельно разработка ракетных двигателей велась в Москве Группой изучения реактивного движения (ГИРД). Ее идейным вдохновителем был Ф. А. Цандер, а организатором – молодой С. П. Королев. Целью Королева была постройка нового ракетного аппарата – ракетоплана.

В 1933 г. Ф. А. Цандер построил и успешно испытал ракетный двигатель ОР1, работавший на бензине и сжатом воздухе, а в 1932–1933 гг. – двигатель ОР2, на бензине и жидком кислороде. Этот двигатель был спроектирован для установки на планере, который должен был совершить полет в качестве ракетоплана.

В 1933 г. в ГИРДе создана и испытана первая советская ракета на жидком топливе.

Развивая начатые работы, советские инженеры в последующем продолжали работать над созданием жидкостных реактивных двигателей. Всего с 1932 по 1941 г. в СССР было разработано 118 конструкций жидкостных реактивных двигателей.

В Германии в 1931 г. состоялись испытания ракет И. Винклера, Риделя и др.

Первый полет на самолетеракетоплане с жидкостнореактивным двигателем был совершен в Советском Союзе в феврале 1940 г. В качестве силовой установки самолета был применен ЖРД. В 1941 г. под руководством советского конструктора В. Ф. Болховитинова был построен первый реактивный самолет – истребитель с жидкостноракетным двигателем. Его испытания были проведены в мае 1942 г. летчиком Г. Я. Бахчиваджи.

В это же время состоялся первый полет немецкого истребителя с таким двигателем. В 1943 г. в США провели испытания первого американского реактивного самолета, на котором был установлен жидкостнореактивный двигатель. В Германии в 1944 г. были построены несколько истребителей с этими двигателями конструкции Мессершмитта и в том же году применены в боевой обстановке на Западном фронте.

Кроме того, ЖРД применялись на немецких ракетах Фау2, созданных под руководством В. фон Брауна.

В 1950е годы жидкостноракетные двигатели устанавливались на баллистических ракетах, а затем на искусственных спутниках Земли, Солнца, Луны и Марса, автоматических межпланетных станциях.

ЖРД состоит из камеры сгорания с соплом, турбонасосного агрегата, газогенератора или парогазогенератора, системы автоматики, органов регулирования, системы зажигания и вспомогательных агрегатов (теплообменники, смесители, приводы).

Идея воздушнореактивных двигателей не раз выдвигалась в разных странах. Наиболее важными и оригинальными работами в этом отношении являются исследования, проведенные в 1908–1913 гг. французским ученым Р. Лореном, который, в частности, в 1911 г. предложил ряд схем прямоточных воздушнореактивных двигателей. Эти двигатели используют в качестве окислителя атмосферный воздух, а сжатие воздуха в камере сгорания обеспечивается за счет динамического напора воздуха.

В мае 1939 г. в СССР впервые состоялось испытание ракеты с прямоточным воздушнореактивным двигателем конструкции П. А. Меркулова. Это была двухступенчатая ракета (первая ступень – пороховая ракета) с взлетным весом 7,07 кг, причем вес топлива для второй ступени прямоточного воздушнореактивного двигателя составлял лишь 2 кг. При испытании ракета достигла высоты 2 км.

В 1939–1940 гг. впервые в мире в Советском Союзе проводились летние испытания воздушнореактивных двигателей, установленных в качестве дополнительных двигателей на самолете конструкции Н. П. Поликарпова. В 1942 г. в Германии испытывались прямоточные воздушнореактивные двигатели конструкции Э. Зенгера.

Воздушнореактивный двигатель состоит из диффузора, в котором за счет кинетической энергии набегающего потока воздуха происходит сжатие воздуха. В камеру сгорания через форсунку впрыскивается топливо и происходит воспламенение смеси. Реактивная струя выходит через сопло.

Процесс работы ВРД непрерывен, поэтому в них отсутствует стартовая тяга. В связи с этим при скоростях полета меньше половины скорости звука воздушнореактивные двигатели не применяются. Наиболее эффективно применение ВРД на сверхзвуковых скоростях и больших высотах. Взлет самолета с воздушнореактивным двигателем происходит при помощи ракетных двигателей на твердом или жидком топливе.

Большее развитие получила другая группа воздушнореактивных двигателей – турбокомпрессорные двигатели. Они подразделяются на турбореактивные, в которых тяга создается струей газов, вытекающих из реактивного сопла, и турбовинтовые, в которых основная тяга создается воздушным винтом.

В 1909 г. проект турбореактивного двигателя был разработан инженером Н. Герасимовым. В 1914 г. лейтенант русского морского флота М. Н. Никольской сконструировал и построил модель турбовинтового авиационного двигателя. Рабочим телом для приведения в действие трехступенчатой турбины служили газообразные продукты сгорания смеси скипидара и азотной кислоты. Турбина работала не только на воздушный винт: отходящие газообразные продукты сгорания, направленные в хвостовое (реактивное) сопло, создавали реактивную тягу дополнительно к силе тяги винта.

В 1924 г. В. И. Базаров разработал конструкцию авиационного турбокомпрессорного реактивного двигателя, состоявшую из трех элементов: камеры сгорания, газовой турбины, компрессора. Поток сжатого воздуха здесь впервые делился на две ветви: меньшая часть шла в камеру сгорания (к горелке), а большая подмешивалась к рабочим газам для понижения их температуры перед турбиной. Тем самым обеспечивалась сохранность лопаток турбины. Мощность многоступенчатой турбины расходовалась на привод центробежного компрессора самого двигателя и отчасти на вращение воздушного винта. Дополнительно к винту тяга создавалась за счет реакции струи газов, пропускаемых через хвостовое сопло.

В 1939 г. на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Его испытаниям помешала война.

В 1941 г. в Англии был впервые осуществлен полет на экспериментальном самолетеистребителе, оснащенном турбореактивным двигателем конструкции Ф. Уиттла. На нем был установлен двигатель с газовой турбиной, которая приводила в действие центробежный компрессор, подающий воздух в камеру сгорания. Продукты сгорания использовались для создания реактивной тяги.


Самолет Уиттла Gloster (E.28/39)

В турбореактивном двигателе воздух, поступающий при полете, сжимается сначала в воздухозаборнике, а затем в турбокомпрессоре. Сжатый воздух подается в камеру сгорания, куда впрыскивается жидкое топливо (чаще всего – авиационный керосин). Частичное расширение газов, образовавшихся при сгорании, происходит в турбине, вращающей компрессор, а окончательное – в реактивном сопле. Между турбиной и реактивным двигателем может быть установлена форсажная камера, предназначенная для дополнительного сгорания топлива.

Сейчас турбореактивными двигателями оснащено большинство военных и гражданских самолетов, а также некоторые вертолеты.

В турбовинтовом двигателе основная тяга создается воздушным винтом, а дополнительная (около 10 %) – струей газов, вытекающих из реактивного сопла. Принцип действия турбовинтового двигателя схож с турбореактивным, с той разницей, что турбина вращает не только компрессор, но и воздушный винт. Эти двигатели применяются в дозвуковых самолетах и вертолетах, а также для движения быстроходных судов и автомобилей.

Наиболее ранние реактивные твердотопливные двигатели использовались в боевых ракетах. Их широкое применение началось в XIX в., когда во многих армиях появились ракетные части. В конце XIX в. были созданы первые бездымные порохи, с более устойчивым горением и большей работоспособностью.

В 1920–1930е годы велись работы по созданию реактивного оружия. Это привело к появлению реактивных минометов – "катюш" в Советском Союзе, шестиствольных реактивных минометов в Германии.

Получение новых видов пороха позволило применять реактивные твердотопливные двигатели в боевых ракетах, включая баллистические. Кроме этого они применяются в авиации и космонавтике как двигатели первых ступеней ракетносителей, стартовые двигатели для самолетов с прямоточными воздушнореактивными двигателями и тормозные двигатели космических аппаратов.

Реактивный твердотопливный двигатель состоит из корпуса (камеры сгорания), в котором находится весь запас топлива и реактивного сопла. Корпус выполняется из стали или стеклопластика. Сопло – из графита, тугоплавких сплавов, графита.

Зажигание топлива производится воспламенительным устройством.

Регулирование тяги производится изменением поверхности горения заряда или площади критического сечения сопла, а также впрыскиванием в камеру сгорания жидкости.

Направление тяги может меняться газовыми рулями, отклоняющейся насадкой (дефлектором), вспомогательными управляющими двигателями и т. п.

Реактивные твердотопливные двигатели очень надежны, могут долго храниться, а следовательно, постоянно готовы к запуску.

Изобретатель : Френк Уиттл (двигатель)
Страна : Англия
Время изобретения : 1928 г.

Турбореактивная авиация зародилась в годы Второй мировой войны, когда был достигнут предел совершенства прежних винтомоторных , оснащенных .

С каждым годом гонка за скоростью становилась все труднее, поскольку даже незначительный ее прирост требовал сотен добавочных лошадиных сил мощности двигателя и автоматически приводил к утяжелению самолета. В среднем, увеличение мощности на 1 л.с. вело за собой увеличение массы двигательной установки (самого двигателя, винта и вспомогательных средств) в среднем на 1 кг. Простые расчеты показывали, что создать винтомоторный самолет-истребитель со скоростью порядка 1000 км/ч практически невозможно.

Необходимая для этого мощность двигателя в 12000 лошадиных сил могла быть достигнута только при весе мотора порядка 6000 кг. В перспективе выходило, что дальнейший рост скорости приведет к вырождению боевых самолетов, превратит их в аппараты, способные носить лишь самих себя.

Для оружия, радиооборудования, брони и запаса горючего на борту уже не оставалось места. Но даже такой ценой невозможно было получить большого прироста скорости. Более тяжелый мотор увеличивал общий вес , что заставляло увеличивать площадь крыла, это вело к возрастанию их аэродинамического сопротивления, для преодоления которого необходимо было повысить мощность двигателя.

Таким образом, круг замыкался и скорость порядка 850 км/ч оказывалась предельно возможной для самолета с . Выход из этой порочной ситуации мог быть только один - требовалось создать принципиально новую конструкцию авиационного двигателя, что и было сделано, когда на смену поршневым самолетам пришли турбореактивные.

Принцип действия простого реактивного двигателя можно понять, если рассмотреть работу пожарного брандспойта. Вода под давлением подается по шлангу к брандспойту и истекает из него. Внутреннее сечение наконечника брандспойта суживается к концу, в связи с чем струя вытекающей воды имеет большую скорость, чем в шланге.

Сила обратного давления (реакции) при этом бывает настолько велика, что пожарник зачастую должен напрягать все силы для того, чтобы удержать брандспойт в требуемом направлении. Этот же принцип можно применить в авиационном двигателе. Самым простым реактивным двигателем является прямоточный.

Представим себе трубу с открытыми концами, установленную на движущемся самолете. Передняя часть трубы, в которую поступает воздух вследствие движения самолета, имеет расширяющееся внутреннее поперечное сечение. Из-за расширения трубы скорость поступающего в нее воздуха снижается, а давление соответственно увеличивается.

Допустим, что в расширяющейся части в поток воздуха впрыскивается и сжигается горючее. Эту часть трубы можно назвать камерой сгорания. Сильно нагретые газы стремительно расширяются и вырываются через суживающееся реактивное сопло со скоростью, многократно превосходящей ту, которую воздушный поток имел на входе. За счет этого увеличения скорости создается реактивная сила тяги, которая толкает самолет вперед.

Нетрудно видеть, что такой двигатель может работать лишь в том случае, если он движется в воздухе со значительной скоростью, но он не может приводиться в действие тогда, когда находится без движения. Самолет с таким двигателем должен или запускаться с другого самолета или разгоняться с помощью специального стартового двигателя. Этот недостаток преодолен в более сложном турбореактивном двигателе.

Наиболее ответственным элементом этого двигателя является газовая турбина, которая приводит во вращение воздушный компрессор, сидящий на одном с ней валу. Воздух, поступающий в двигатель, сначала сжимается во входном устройстве - диффузоре, затем в осевом компрессоре и после этого попадает в камеру сгорания.

Топливом обычно служит керосин, который вбрызгивается в камеру сгорания через форсунку. Из камеры продукты сгорания, расширяясь, поступают, прежде всего, на лопатки газовой , приводя ее во вращение, а затем в сопло, в котором разгоняются до очень больших скоростей.

Газовая турбина использует лишь небольшую часть энергии воздушно-газовой струи. Остальная часть газов идет на создание реактивной силы тяги, которая возникает за счет истекания с большой скоростью струи продуктов сгорания из сопла. Тяга турбореактивного двигателя может форсироваться, то есть увеличиваться на короткий период времени различными способами.

Например, это можно делать с помощью так называемого дожигания (при этом в поток газов позади турбины дополнительно впрыскивается топливо, которое сгорает за счет кислорода, не использованного в камерах сгорания). Дожиганием можно за короткий срок дополнительно увеличить тягу двигателя на 25-30% при малых скоростях и до 70% при больших скоростях.

Газотурбинные двигатели начиная с 1940 года, произвели настоящую революцию в авиационной технике, но первые разработки по их созданию появились десятью годами прежде. Отцом турбореактивного двигателя по праву считается английский изобретатель Френк Уиттл. Еще в 1928 году, будучи слушателем в авиационной школе в Крэнуэлле, Уиттл предложил первый проект реактивного двигателя, оснащенного газовой турбиной.

В 1930 году он получил на него патент. Государство в то время не заинтересовалось его разработками. Но Уиттл получил помощь от некоторых частных фирм, и в 1937 году по его проекту фирма «Бритиш-Томсон-Хаустон» построила первый в истории турбореактивный двигатель, получивший обозначение «U». Только после этого министерство авиации обратило внимание на изобретение Уиттла. Для дальнейшего совершенствования двигателей его конструкции была создана фирма «Пауэр», имевшая поддержку от государства.

Тогда же идеи Уиттла оплодотворили конструкторскую мысль Германии. В 1936 году немецкий изобретатель Охайн, в то время студент Геттингенского университета, разработал и запатентовал свой турбореактивный двигатель. Его конструкция почти ничем не отличалась от конструкции Уиттла. В 1938 году фирма «Хейнкель», принявшая Охайна на работу, разработала под его руководством турбореактивный двигатель HeS-3B, который был установлен на самолете He-178. 27 августа 1939 года этот самолет совершил первый успешный полет.

Конструкция He-178 во многом предвосхищала устройство будущих реактивных самолетов. Воздухозаборник располагался в носовой части фюзеляжа. Воздух, разветвляясь, обходил кабину летчика и попадал прямым потоком в двигатель. Горячие газы истекали через сопло в хвостовой части. Крылья у этого самолета были еще деревянные, но фюзеляж - из дюралюминия.

Двигатель, установленный позади кабины летчика, работал на бензине и развивал тягу 500 кг. Максимальная скорость самолета достигала 700 км/ч. В начале 1941 года Ханс Охайн разработал более совершенный двигатель HeS-8 с тягой 600 кг. Два таких двигателя были установлены на следующем самолете He-280V.

Испытания его начались в апреле того же года и показали хороший результат - самолет развивал скорость до 925 км/ч. Однако серийное производство этого истребителя так и не началось (всего было изготовлено 8 штук) из-за того, что двигатель все-таки оказался ненадежным.

Тем временем «Бритиш-Томсон-Хаустон» выпустила двигатель W1.X, специально спроектированный под первый английский турбореактивный самолет «Глостер G40», который совершил свой первый полет в мае 1941 года (на самолете был установлен затем усовершенствованный двигатель Уиттла W.1). Английскому первенцу было далеко до немецкого. Максимальная скорость его равнялась 480 км/ч. В 1943 году был построен второй «Глостер G40» с более мощным двигателем, развивавший скорость до 500 км/ч.

По своей конструкции «Глостер» удивительно напоминал немецкий «Хейнкель». G40 имел цельнометаллическую конструкцию с воздухозаборником в носовой части фюзеляжа. Подводящий воздуховод был разделен и огибал с обеих сторон кабину летчика. Истечение газов происходило через сопло в хвосте фюзеляжа.

Хотя параметры G40 не только не превосходили те, что имели в то время скоростные винтомоторные самолеты, но и заметно уступали им, перспективы применения реактивных двигателей оказались настолько многообещающими, что английское министерство авиации решило приступить к серийному выпуску турбореактивных истребителей-перехватчиков. Фирма «Глостер» получила заказ на разработку такого самолета.

В последующие годы сразу несколько английских фирм начали производить различные модификации турбореактивного двигателя Уиттла. Фирма «Ровер», взяв за основу двигатель W.1, разработала двигатели W2B/23 и W2B/26. Затем эти двигатели были куплены фирмой «Роллс-Ройс», которая на их основе создала свои модели - «Уэллэнд» и «Дервент».

Первым в истории серийным турбореактивным самолетом стал, впрочем, не английский «Глостер», а немецкий «Мессершмитт» Ме-262. Всего было изготовлено около 1300 таких самолетов различных модификаций, оснащенных двигателем фирмы «Юнкерс» «Юмо-004B». Первый самолет этой серии был испытан в 1942 году. Он имел два двигателя с тягой 900 кг и развивал скорость 845 км/ч.

Английский серийный самолет «Глостер G41 Метеор» появился в 1943 году. Оснащенный двумя двигателями «Дервент» с тягой каждого по 900 кг, «Метеор» развивал скорость до 760 км/ч и имел высоту полета до 9000 м. В дальнейшем на самолеты начали устанавливать более мощные «Дервенты» с тягой около 1600 кг, что позволило увеличить скорость до 935 км/ч. Этот самолет отлично зарекомендовал себя, поэтому производство различных модификаций G41 продолжалось вплоть до конца 40-х годов.

США в развитии реактивной авиации поначалу сильно отставали от европейских стран. Вплоть до Второй мировой войны здесь вообще не было предпринято никаких попыток создать реактивный самолет. Только в 1941 году, когда из Англии были получены образцы и чертежи двигателей Уиттла, эти работы развернулись полным ходом.

Фирма «Дженерал Электрик», взяв за основу модель Уиттла, разработала турбореактивный двигатель I-A, который был установлен на первом американском реактивном самолете P-59A «Эркомет». Американский первенец впервые поднялся в воздух в октябре 1942 года. Он имел два двигателя, которые размещались под крыльями вплотную к фюзеляжу. Это была еще несовершенная конструкция.

По свидетельству американских летчиков, испытывавших самолет, P-59 был хорош в управлении, но летные данные его оставались неважными. Двигатель оказался слишком маломощным, так что это был скорее планер, чем настоящий боевой самолет. Всего было построено 33 такие машины. Их максимальная скорость составляла 660 км/ч, а высота полета до 14000 м.

Первым серийным турбореактивным истребителем в США стал «Локхид F-80 Шутинг Стар» с двигателем фирмы «Дженерал Электрик» I-40 (модификация I-A). До конца 40-х годов было выпущено около 2500 этих истребителей различных моделей. Скорость их в среднем составляла около 900 км/ч. Однако на одной из модификаций этого самолета XF-80B 19 июня 1947 года впервые в истории была достигнута скорость 1000 км/ч.

В конце войны реактивные самолеты по многим параметрам еще уступали отработанным моделям винтомоторных самолетов и имели множество своих специфических недостатков. Вообще, при строительстве первых турбореактивных самолетов конструкторы во всех странах столкнулись со значительными трудностями. То и дело прогорали камеры сгорания, ломались лопатки и компрессоров и, отделившись от ротора, превращались в снаряды, сокрушавшие корпус двигателя, фюзеляж и крыло.

Но, несмотря на это, реактивные самолеты имели перед винтомоторными огромное преимущество - приращение скорости с увеличением мощности турбореактивного двигателя и его веса происходило гораздо стремительнее, чем у поршневого. Это решило дальнейшую судьбу скоростной авиации - она повсеместно становится реактивной.

Увеличение скорости вскоре привело к полному изменению внешнего вида самолета. На околозвуковых скоростях старая форма и профиль крыла оказались неспособными нести самолет - он начинал «клевать» носом и входил в неуправляемое пике. Результаты аэродинамических испытаний и анализ летных происшествий постепенно привели конструкторов к новому типу крыла - тонкому, стреловидному.

Впервые такая форма крыльев появилась на советских истребителях. Несмотря на то, что СССР позже западных государств приступил к созданию турбореактивных самолетов, советские конструкторы очень быстро сумели создать высококлассные боевые машины. Первым советским реактивным истребителем, запущенным в производство, был Як-15.

Он появился в конце 1945 года и представлял собой переоборудованный Як-3 (известный во время войны истребитель с поршневым мотором), на который был установлен турбореактивный двигатель РД-10 - копия трофейного немецкого «Юмо-004B» с тягой 900 кг. Он развивал скорость около 830 км/ч.

В 1946 году на вооружение Советской армии поступил МиГ-9, снабженный двумя турбореактивными двигателями «Юмо-004B» (официальное обозначение РД-20), а в 1947 году появился МиГ-15 - первый в истории боевой реактивный самолет со стреловидным крылом, оснащенный двигателем РД-45 (так обозначался двигатель «Нин» фирмы «Роллс-Ройс», купленный по лицензии и модернизированный советскими авиаконструкторами) с тягой 2200 кг.

МиГ-15 поразительно отличался от своих предшественников и удивлял боевых летчиков необыкновенными, скошенными назад крыльями, огромным килем, увенчанным таким же стреловидным стабилизатором, и сигарообразным фюзеляжем. Самолет имел и другие новинки: катапультирующееся кресло и гидравлические усилители рулей.

Он был вооружен скорострельной и двумя (в более поздних модификациях - тремя пушками). Обладая скоростью 1100 км/ч и потолком в 15000 м, этот истребитель в течение нескольких лет оставался лучшим в мире боевым самолетом и вызвал к себе огромный интерес. (Позже конструкция МиГ-15 оказала значительное влияние на проектирование истребителей в западных странах.)

В короткое время МиГ-15 стал самым распространенным истребителем в СССР, а также был принят на вооружение в армиях его союзников. Этот самолет хорошо зарекомендовал себя и во время Корейской войны. По многим параметрам он превосходил американские «Сейбры».

С появлением МиГ-15 закончилось детство турбореактивной авиации и начался новый этап в ее истории. К этому времени реактивные самолеты освоили все дозвуковые скорости и вплотную приблизились к звуковому барьеру.

ВНИМАНИЕ! Устаревший формат новостей. Возможны проблемы с корректным отображением контента.

Реактивный двигатель

Ранние самолёты с реактивными двигателями: Me.262 и Як-15

Идеи создания теплового двигателя, к которому относится и реактивный двигатель, известны человеку с древнейших времен. Так, в трактате Герона Александрийского под названием «Пневматика» присутствует описание Эолипила - шара «Эола». Данная конструкция представляла собой не что иное, как паровую турбину, в которой пар подавался через трубки в бронзовую сферу и, вырываясь из нее, эту сферу и раскручивал. Вероятнее всего, устройство использовалось для развлечений.

Не обошел стороной идею и великий Леонардо, вознамерившийся при помощи горячего воздуха, подаваемого на лопасти, вращать вертел для жарки.

Впервые идею газотурбинного двигателя предложил в 1791 году английский изобретатель Дж. Барбер: конструкция его ГТД была оснащена газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной.

Использовал в качестве силовой установки для своего самолета, разработанного в 1878 году, тепловой двигатель и А.Ф. Можайский: два паросиловых двигателя приводили в движение пропеллеры машины. Из-за низкого КПД желаемого эффекта достичь не удалось.

Другой русский инженер - П.Д. Кузьминский - в 1892 году разработал идею газотурбинного двигателя, в котором топливо сгорало при постоянном давлении. Начав реализацию проекта в 1900 году, он решил установить ГТД с многоступенчатой газовой турбиной на небольшой катер. Однако смерть конструктора помешала закончить начатое.

Более интенсивно за создание реактивного двигателя принялись лишь в ХХ веке: сначала теоретически, а через несколько лет - уже и практически.

В 1903 году в работе «Исследование мировых пространств реактивными приборами» К.Э. Циолковским были разработаны теоретические основы жидкостных ракетных двигателей (ЖРД) с описанием основных элементов реактивного двигателя, использующего жидкое топливо.

Идея создания воздушно-реактивного двигателя (ВРД) принадлежит Р. Лорину, запатентовавшему проект в 1908 году. При попытке создания двигателя, после обнародования чертежей устройства в 1913 году, изобретатель потерпел неудачу: скорости, необходимой для функционирования ВРД, достигнуть так и не удалось.

Попытки создания газотурбинных двигателей продолжались и далее. Так, в 1906 году русский инженер В.В. Караводин разработал, а через два года и построил бескомпрессорный ГТД с четырьмя камерами прерывистого сгорания и газовой турбиной. Однако мощность, развиваемая устройством, даже при 10000 об/мин не превышала 1,2 квт (1,6 л.с.).

Создал газотурбинный двигатель прерывистого горения и немецкий конструктор Х. Хольварт. Построив ГТД в 1908 году, к 1933 году, после многолетних работ по его совершенствованию, он довёл КПД двигателя до 24%. Тем не менее, идея не нашла широкого применения.

Идея же турбореактивного двигателя была озвучена в 1909 году русским инженером Н.В. Герасимовым, получившим патент на газотурбинный двигатель для создания реактивной тяги. Работы по реализации этой идеи не прекращались в России и впоследствии: в 1913 году М.Н. Никольской проектирует ГТД мощностью 120 квт (160 л.с.) с трёхступенчатой газовой турбиной; в 1923 году В.И. Базаров предлагает принципиальную схему газотурбинного двигателя, близкую по схеме современным турбовинтовым двигателям; в 1930 году В.В. Уваров совместно с Н.Р. Брилингом проектирует, а в 1936 году и реализует газотурбинный двигатель с центробежным компрессором.

Огромный вклад в создание теории реактивного двигателя внесли работы русских ученых С.С. Неждановского, И.В. Мещерского, Н.Е. Жуковского. французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. На создание воздушно-реактивного двигателя повлияла и работа известного советского ученого Б.С. Стечкина, который опубликовал в 1929 году свой труд «Теория воздушно-реактивного двигателя».

Не останавливались работы по созданию и жидкостного реактивного двигателя: в 1926 году американский ученый Р. Годдард осуществил запуск ракеты на жидком топливе. Работы над этой темой происходили и в Советском Союзе: в период с 1929 по 1933 год В.П. Глушко разработал и испытал в действии в Газодинамической лаборатории электротермический реактивный двигатель. Им же в этот период были созданы и первые отечественные жидкостные реактивные двигатели - ОРМ, ОРМ-1, ОРМ-2.

Наибольший вклад в практическое воплощение реактивного двигателя внесли немецкие конструкторы и ученые. Имея поддержку и финансирование со стороны государства, рассчитывавшего этим путем добиться технического превосходства в грядущей войне, инженерный корпус III Рейха с максимальной отдачей и в короткие сроки подошел к созданию боевых комплексов, имевших в своей основе идеи реактивного движения.

Концентрируя внимание на авиационной составляющей, можно сказать, что уже 27 августа 1939 года летчик-испытатель фирмы Heinkel флюг-капитан Э. Варзиц поднял в воздух He.178 - реактивный самолет, технологические наработки которого были впоследствии использованы при создании истребителей Heinkel He.280 и Messerschmitt Me.262 Schwalbe.

Установленный на Heinkel He.178 двигатель Heinkel Strahltriebwerke HeS 3 конструкции Х.-И. фон Охайна хоть и не обладал высокой мощностью, но сумел открыть эру реактивных полетов боевой авиации. Достигнутая He.178 максимальная скорость в 700км/ч с использованием двигателя, мощность которого не превышала 500 кгс, говорила о многом. Впереди лежали безграничные возможности, которые лишали будущего поршневые моторы.

Созданная в Германии целая серия реактивных двигателей, например, Jumo-004 производства фирмы Junkers, позволила ей уже в конце Второй мировой войны обладать серийными реактивными истребителями и бомбардировщиками, опередив другие страны в этом направлении на несколько лет. После поражения III Рейха именно немецкие технологии дали толчок развитию реактивного самолетостроения во многих странах мира.

Единственной страной, сумевшей ответить на немецкий вызов, была Великобритания: созданный Ф. Уиттлом турбореактивный двигатель Rolls-Royce Derwent 8 был установлен на истребителе Gloster Meteоr.


Трофейный Jumo 004

Первым в мире турбовинтовым двигателем стал венгерский двигатель Jendrassik Cs-1 конструкции Д. Ендрашика, построившего его в 1937 году на заводе Ganz в Будапеште. Несмотря на возникшие в ходе внедрения проблемы, двигатель предполагалось устанавливать на венгерский двухмоторный штурмовик Varga RMI-1 X/H, специально сконструированный для этого авиаконструктором Л. Варго. Однако довести работы до конца венгерские специалисты так и не сумели - предприятие было перенацелено на выпуск немецких моторов Daimler-Benz DB 605, выбранных для установки на венгерские Messerschmitt Me.210.

Перед началом войны в СССР продолжались работы по созданию различных типов реактивных двигателей. Так, в 1939 году прошли испытания ракеты, на которых стояли прямоточные воздушно-реактивные двигатели конструкции И.А. Меркулова.

В том же году на ленинградском Кировском заводе начались работы по постройке первого отечественного турбореактивного двигателя конструкции А.М. Люльки. Однако начавшаяся война прекратила опытные работы над двигателем, направив всю мощность производства на нужды фронта.

Настоящая эра реактивных двигателей началась после завершения Второй мировой войны, когда за короткий промежуток времени был покорен не только звуковой барьер, но и земное притяжение, что позволило вывести человечество в космическое пространство.

Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Применяются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолёты оснащены воздушно-реактивными двигателям

В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно: нет опоры (твёрдой жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получить ускорение. Применение же реактивных двигателей для самолётов и ракет, не выходящих за пределы атмосферы, связано стем, что именно реактивные двигатели могут обеспечить максимальную скорость полёта.

Устройство реактивного двигателя.


Просто по принципу действия: забортный воздух (в ракетных двигателях - жидкий кислород) засасывается в турбину , там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и дви­гает машину.

В начале турбины стоит вентилятор , который засасывает воздух из внешней среды в турбины. Основных задач две - первичный забор воздуха и охлаждение всего дв игателя в целом, путем прокачивания воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

За вентилятором стоит мощный компрессор , который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания смешивает топливо с воздухом. После образования топливо-воздушной смеси, она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически, реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя - одна из самых горячих его частей. Ей необходимо постоянное интенсивное охлаждение . Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания, горящая топливо-воздушная смесь направляется непосредственно в турбину . Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал , на котором находятся вентиллятор и компрессор . Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.


Существует два основных класса реактивных двига телей:


Воздушно-реактивные двигатели - реактивный двигатель, в котором атмосферный воздух применяется как основное рабочее тело в термодинамическом цикле, а также при создании реактивной тяги двигателя. Такие двигатели используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.

Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде , в том числе и в безвоздушном пространстве.


Виды реактивных двигателей.

- Классический реактивный двигатель - используется в основном на истребителях в различных модификациях.

К лассический реактивный двигатель

- Турбовинтовой двигатель.

Такие двигатели позволяют большим самолетам летать на приемлемых скоростях и тратить меньше горючего

Двухлопастной турбовинтовой двигатель


- Турбовентиляторный реактивный двигатель.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра , который подает воздух не только в турбину, но и создает достаточно мощный поток вне её . Таким образом достигается повышенная экономичность, за счет улучшения КПД.


© 2024
reaestate.ru - Недвижимость - юридический справочник