12.09.2019

Помощи модели степенного уравнения регрессии вида. Экономический смысл параметров уравнения линейной регрессии


Назначение сервиса . С помощью данного онлайн-калькулятора можно найти параметры уравнения нелинейной регрессии (экспоненциальной, степенной, равносторонней гиперболы, логарифмической, показательной) (см. пример).

Инструкция . Укажите количество исходных данных. Полученное решение сохраняется в файле Word . Также автоматически создается шаблон решения в Excel .

Количество строк (исходных данных)
Заданы итоговые значения величин (∑x, ∑x 2 , ∑xy, ∑y, ∑y 2)
",0);">
Примечание : если необходимо определить параметры параболической зависимости (y = ax 2 + bx + c), то можно воспользоваться сервисом Аналитическое выравнивание .
Ограничить однородную совокупность единиц, устранив аномальные объекты наблюдения можно через метод Ирвина или по правилу трех сигм (устранить те единицы, для которых значение объясняющего фактора отклоняется от среднего более, чем на утроенное среднеквадратичное отклонение).

Виды нелинейной регрессии

Здесь ε - случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.

Уравнению регрессии первого порядка - это уравнение парной линейной регрессии .

Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx 2 .

Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx 2 + dx 3 .

Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):

  1. Замена переменных.
  2. Логарифмирование обеих частей уравнения.
  3. Комбинированный.
y = f(x) Преобразование Метод линеаризации
y = b x a Y = ln(y); X = ln(x) Логарифмирование
y = b e ax Y = ln(y); X = x Комбинированный
y = 1/(ax+b) Y = 1/y; X = x Замена переменных
y = x/(ax+b) Y = x/y; X = x Замена переменных. Пример
y = aln(x)+b Y = y; X = ln(x) Комбинированный
y = a + bx + cx 2 x 1 = x; x 2 = x 2 Замена переменных
y = a + bx + cx 2 + dx 3 x 1 = x; x 2 = x 2 ; x 3 = x 3 Замена переменных
y = a + b/x x 1 = 1/x Замена переменных
y = a + sqrt(x)b x 1 = sqrt(x) Замена переменных
Пример . По данным, взятым из соответствующей таблицы, выполнить следующие действия:
  1. Построить поле корреляции и сформулировать гипотезу о форме связи.
  2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
  3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
  4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
  5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
  6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
  7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05 .
  8. Оценить полученные результаты, выводы оформить в аналитической записке.
Год Фактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. - трлн. руб.), y Среднедушевые денежные доходы населения (в месяц), руб. (1995 г. - тыс. руб.), х
1995 872 515,9
2000 3813 2281,1
2001 5014 3062
2002 6400 3947,2
2003 7708 5170,4
2004 9848 6410,3
2005 12455 8111,9
2006 15284 10196
2007 18928 12602,7
2008 23695 14940,6
2009 25151 16856,9

Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии . Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a e bx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e 7.81321500 e 0.000162x = 2473.06858e 0.000162x

Степенное уравнение регрессии имеет вид y = a x b
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e 0.77143204 x 0.9626 = 2.16286x 0.9626

Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706

Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) - 49694.9535

Показательное уравнение регрессии имеет вид y = a b x + ε
После линеаризации получим: ln(y) = ln(a) + x ln(b)
Эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
y = e 7.8132 *e 0.000162x = 2473.06858*1.00016 x

x y 1/x ln(x) ln(y)
515.9 872 0.00194 6.25 6.77
2281.1 3813 0.000438 7.73 8.25
3062 5014 0.000327 8.03 8.52
3947.2 6400 0.000253 8.28 8.76
5170.4 7708 0.000193 8.55 8.95
6410.3 9848 0.000156 8.77 9.2
8111.9 12455 0.000123 9 9.43
10196 15284 9.8E-5 9.23 9.63
12602.7 18928 7.9E-5 9.44 9.85
14940.6 23695 6.7E-5 9.61 10.07
16856.9 25151 5.9E-5 9.73 10.13

1. Построим уравнения степенной нелинейной регрессии вида для пар переменных y, x.

Нахождение модели парной регрессии сводится к оценке уравнения в целом и по параметрам (b0, b1). Для оценки параметров однофакторной модели используют метод наименьших квадратов (МНК). В МНК получается, что сумма квадратов отклонений фактических значений показателя у от теоретических ух минимальна

Сущность нелинейных уравнений заключается в приведении их к линейному виду и как при линейных уравнениях решается система относительно коэффициентов b0 и b1.


Рисунок 3 Линия регрессии на корреляционном поле. Ось ординат - значения y(Производительность труда), ось абсцисс -значения x (Удельный вес рабочих в составе ППП)


Рисунок 4 Линия регрессии на корреляционном поле. Ось ординат - значения y(степ.функция), ось абсцисс -значения x (Удельный вес рабочих в составе ППП)

Найдем среднюю относительную ошибку аппроксимации по формуле:

Полученное значение между 20% и 50%, что свидетельствует о существенности удовлетворительного отклонения расчетных данных от фактических, по которым построена эконометрическая модель.

Исследование статистической значимости уравнения регрессии в целом проводится с помощью F-критерия Фишера. Расчетное значение критерия находится по формуле:

Для парного уравнения p = 1.

Табличное (теоретическое) значение критерия находится по таблице критических значений распределения Фишера-Снедекора по уровню значимости по уровню значимости б и двум числам степеней свободы k1 = p = 1 и k2 = n - p - 1 = 51.

Если Fрасч

то гипотеза принимается, а уравнение линейной регрессии в целом считается статистически незначимым (с вероятностью ошибки 5%).Для уравнения Fрасч = 0,01609). Неравенство выполняется. Уравнение в целом статистически незначимо.

Теснота нелинейной корреляционной связи определяется с помощью корреляционных отношений (индекс корреляции).

Экспоненциальная регрессия имеет вид

ŷ = е + b (или ŷ = ba х ); (24)

степенная регрессия имеет вид

ŷ = а ; (25)

Для нахождения коэффициентов а иb предварительно проводят процедуру линеаризации выражений (24) и (25):

lnŷ =lnb+ x lnа, (26)

lnŷ =lnb lnx , (27)

а затем уже строят линейную регрессию между lnŷ и х для экспоненциальной регрессии, и между lnŷ и lnх для степенной регрессии.

Наибольшее распространение степенной функции в эконометрике связано с тем, что параметр а имеет четкое экономическое истолкование, – он является коэффициентом эластичности. Это значит, что коэффициент b показывает, на сколько % в среднем изменится результат, если фактор изменится на 1%.

Для вычисления параметров экспоненциальной регрессии (24) на компьютере используется встроенная статистическая функция ЛГРФПРИБЛ . Порядок вычисления аналогичен применению функции ЛИНЕЙН .

Для вычисления параметров степенной регрессии после преобразования исходных данных в соответствие с (27), можно воспользоваться функцией ЛИНЕЙН.

Для получения графиков однофакторных регрессий можно применить Мастер диаграмм , строя предварительно непрерывный или точечный график исходных данных (диаграмму рассеяния), а затем использовать режим Добавить линию тренда , причем в этом режиме Excel предоставляет возможность выбора шести функций – линейной, логарифмической, полиномиальной, степенной, экспоненциальной и скользящей средней. После выбора функции в режиме Параметры задайте флажок Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации( R ^2) .

4. Временные ряды.

4.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.

Методы математической статистики широко применяются для анализа экономических временных рядов .

В общем случае временной ряд содержит детерминированную и случайную составляющие:

у t =f(t,х t)+ t , t=1,…,Т,

гдеу t – значения временного ряда; f(t,х t) – детерминированная составляющая; х t – значения факторов, влияющих на детерминированную составляющую в момент t;  t – случайная составляющая; Т – длина ряда.

Получив оценки детерминированной и случайной составляющих, решают задачи прогноза будущих значений, как самого временного ряда, так и его составляющих.

Если детерминированная составляющая зависит только от времени и линейна относительно своих параметров, то задача сводится к задаче множественной линейной регрессии, рассмотренной выше.

Действительно, в этом случае

у t = 0 + 1  1 (t) + 2  2 (t) +…+ m  m (t)+ t , t=1,…,Т. (28)

В частном случае,

у t = 0 + 1 t 1 + 2 t 2 +…+ m t m +  t , t=1,…,Т. (29)

Детерминированная составляющая в свою очередь представляется тремя составляющими.

Долговременная эволюторно изменяющаяся составляющая является результатом действия факторов, приводящих к постепенному изменению экономического показателя. Так, в результате научно-технического прогресса, совершенствования системы управления производством показатели эффективности производства растут, а удельные расходы на единицу полезного эффекта снижаются.

Долговременная циклическая составляющая проявляется на протяжении длительного времени в результате действия факторов, обладающих большим последействием или циклически изменяющихся во времени. Например, кризисы перепроизводства или периодичность солнечной активности, влияющая на урожайность.

Сезонная циклическая составляющая легко просматривается в колебаниях продуктивности сельскохозяйственных животных, а также в колебаниях розничного товарооборота в зависимости от времени года.

Многие исследователи первую составляющую называют трендом , другие трендом называют все три составляющие.

Эволюторно изменяющуюся долговременную составляющую во многих практических случаях представляют в виде некоторой аналитической функции (см. ниже), тогда как долговременная и сезонная циклические составляющие представляются тригонометрическими трендами .

Для построения эволюторных трендов (моделирования тенденции) чаще всего применяются те же функции, которые мы рассматривали выше:

    линейный тренд: ŷ t =b + at ;

    гипербола: ŷ t = b+a /t ;

    экспоненциальный тренд: ŷ t = е b+ a t (или ŷ t =ba t );

    тренд в форме степенной функции ŷ t = b t a ;

    полином порядка m: ŷ t = b + a 1 t + a 2 t 2 +…+ a m t m .

Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время t. Для нелинейных трендов предварительно проводят процедуру их линеаризации.

Пример 6 . Имеются помесячные данные о темпах роста заработной платы в РФ за 10 месяцев 2004 г. в процентах к уровню декабря 2003г. (табл. 10). Требуется выбрать наилучший тип тренда и определить его параметры.

Таблица 10

Определим параметры основных видов тренда. Результаты этих расчетов представлены в табл. 11.

Таблица 11

Наилучшей является степенная форма тренда, которая в исходном виде (после потенцирования) примет следующий вид

ŷ t = е 4.39 t 0,193

или ŷ t = 80,32t 0,193 .

Наиболее простую экономическую интерпретацию имеют параметры линейного и экспоненциального трендов.

Параметры линейного тренда можно интерпретировать так:

b – начальный уровень временного ряда при t =0;

a – средний за период абсолютный прирост ряда.

Применительно к примеру 6 можно сказать, что темпы роста месячной заработной платы за 10 месяцев 2004г. изменялись от 82,66% со средним за месяц абсолютным приростом 4,72%.

Параметры экспоненциального тренда имеют следующую интерпретацию:

b – начальный уровень временного ряда при t =0;

е a – средний за период коэффициент роста ряда.

В примере 6 уравнение экспоненциального тренда в исходной форме имеет вид

ŷ t = е 4.43 е 0,045 t

или ŷ t = 83,96е 0,045 t .

Следовательно, можно сказать, что темпы роста месячной заработной платы за 10 месяцев 2004г. изменялись от 83,96% со средним за месяц темпом роста, равным е 0,045 = 1,046.

      Моделирование сезонных и циклических колебаний.

Общий вид модели (аддитивной) следующий:

где Т – трендовая, S – сезонная и Е – случайная компонента.

S может моделироваться с помощью тригонометрических функций, однако можно обойтись и более простым способом, суть которого разберем на простом примере.

Пример 7. Пусть известны объемы потребления электроэнергии жителями района за четыре года (табл.12).

Таблица 12

№ квартала

Потребление электроэнергии

Итого за 4 квартала

Скользящая средняя за 4 квартала

Центрированная скользящая средняя

Оценка сезонной компоненты

Данный временной ряд содержит сезонные колебания периодичностью 4 (объемы потребления электроэнергии в осенне-зимний период выше, чем весной и летом).

Шаг 1. Проведем выравнивание исходных данных методом скользящей средней. Для этого:

а) просуммируем у t последовательно за каждые 4 квартала со сдвигом на один (гр.3 табл. 12);

б) разделив эти суммы на 4, найдем скользящие средние (гр.4 табл. 12);

в) приведем эти значения к соответствующим кварталам, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл.12).

Шаг 2. Найдем оценки сезонной компоненты (гр.6 табл. 12). Найдем средние за каждый квартал оценки сезонной компоненты

Š 1 =(0,575+0,55+0,675)/3=0,6;

Š 2 =(–2,075 – 2,025 – 1,775)/3= –1,958;

Š 3 =(–1,25 – 1,1 – 1,475)/3= –1,275;

Š 4 =(2,55+2,7+2,875)/3=2,708.

Сумма значений сезонной компоненты по всем кварталам должна быть равна нулю, а у нас получилось 0,6 – 1,958 – 1,275 + 2,7=0,075, поэтому определяем корректирующий коэффициент k=0,075/4=0,01875. Окончательно определяем сезонную компоненту S i = Š i – k.

Таким образом, получаем

S 1 =0,581; S 2 = –1,979; S 3 = –1,294; S 4 =2,69.

Занесем полученные значения в табл.13 для соответствующих кварталов (гр.3).

Таблица 13

T+E= y t – S t

Шаг 3 . Вычисляем T+E= y t – S t (гр.4 табл.13).

Шаг 4. По данным графы 4 строим линейный тренд Т=5,715 + 0,186t . Подставляя в это уравнение t =1,2,…16, находим Т (гр. 5 табл.13).

Шаг 5 . Находим теоретические значения T+S (гр. 6 табл. 13).

Шаг 6. Вычисляются ошибки модели и их квадраты (гр. 7 и 8 табл.13).

И корреляция

1.1. Понятие регрессии

Парной регрессией называется уравнение связи двух переменных у и х

вида y = f (x ),

где у – зависимая переменная (результативный признак); х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия описывается уравнением: y = a + b × x +e .

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным, но ли-

нейных по оцениваемым параметрам:

· полиномы разных степеней

· равносторонняя гипербола:

Примеры регрессий, нелинейных по оцениваемым параметрам:

· степенная

· показательная

· экспоненциальная

Наиболее часто применяются следующие модели регрессий:

– прямой

– гиперболы

– параболы

– показательной функции

– степенная функция

1.2. Построение уравнения регрессии

Постановка задачи. По имеющимся данным n наблюдений за совместным

изменением двух параметров x и y {(xi ,yi ), i=1,2,...,n} необходимо определить

аналитическую зависимость ŷ=f(x) , наилучшим образом описывающую данные наблюдений.

Построение уравнения регрессии осуществляется в два этапа (предполагает решение двух задач):

– спецификация модели (определение вида аналитической зависимости

ŷ=f(x) );

– оценка параметров выбранной модели.

1.2.1. Спецификация модели

Парная регрессия применяется, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной.

Применяется три основных метода выбора вида аналитической зависимости:

– графический (на основе анализа поля корреляций);

– аналитический, т. е. исходя из теории изучаемой взаимосвязи;

– экспериментальный, т. е. путем сравнения величины остаточной дисперсии D ост или средней ошибки аппроксимации , рассчитанных для различных

моделей регрессии (метод перебора).

1.2.2. Оценка параметров модели

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

В случае линейной регрессии параметры а и b находятся из следующей

системы нормальных уравнений метода МНК:

(1.1)

Можно воспользоваться готовыми формулами, которые вытекают из этой

(1.2)

Для нелинейных уравнений регрессии, приводимых к линейным с помощью преобразования (x , y ) → (x’ , y’ ), система нормальных уравнений имеет

вид (1.1) в преобразованных переменных x’ , y’ .

Коэффициент b при факторной переменной x имеет следующую интерпретацию: он показывает, на сколько изменится в среднем величина y при изменении фактора x на 1 единицу измерения .

Гиперболическая регрессия :

x’ = 1/x ; y’ = y .

Уравнения (1.1) и формулы (1.2) принимают вид

Экспоненциальная регрессия:

Линеаризующее преобразование: x’ = x ; y’ = lny .

Модифицированная экспонента : , (0 < a 1 < 1).

Линеаризующее преобразование: x’ = x ; y’ = ln y – К│.

Величина предела роста K выбирается предварительно на основе анализа

поля корреляций либо из качественных соображений. Параметр a 0 берется со

знаком «+», если y х > K и со знаком «–» в противном случае.

Степенная функция:

Линеаризующее преобразование: x’ = ln x ; y’ = ln y .

Показательная функция:

Линеаризующее преобразование: x’ = x ; y’ = lny .

https://pandia.ru/text/78/146/images/image026_7.jpg" width="459" height="64 src=">

Парабола второго порядка :

Парабола второго порядка имеет 3 параметра a 0, a 1, a 2, которые определяются из системы трех уравнений

1.3. Оценка тесноты связи

Тесноту связи изучаемых явлений оценивает линейный коэффициент

парной корреляции rxy для линейной регрессии (–1 ≤ r xy ≤ 1)

и индекс корреляции ρxy для нелинейной регрессии

Имеет место соотношение

Долю дисперсии, объясняемую регрессией , в общей дисперсии результативного признака у характеризует коэффициент детерминации r2xy (для линейной регрессии) или индекс детерминации (для нелинейной регрессии).

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

Для оценки качества построенной модели регрессии можно использовать

показатель (коэффициент, индекс) детерминации R 2 либо среднюю ошибку аппроксимации.

Чем выше показатель детерминации или чем ниже средняя ошибка аппроксимации, тем лучше модель описывает исходные данные.

Средняя ошибка аппроксимации – среднее относительное отклонение

расчетных значений от фактических

Построенное уравнение регрессии считается удовлетворительным, если

значение не превышает 10–12 %.

1.4. Оценка значимости уравнения регрессии, его коэффициентов,

коэффициента детерминации

Оценка значимости всего уравнения регрессии в целом осуществляется с

помощью F -критерия Фишера.

F- критерий Фишера заключается в проверке гипотезы Но о статистической незначимости уравнения регрессии. Для этого выполняется сравнение

фактического F факт и критического (табличного) F табл значений F- критерия

Фишера.

F факт определяется из соотношения значений факторной и остаточной

дисперсий, рассчитанных на одну степень свободы

где n – число единиц совокупности; m – число параметров при переменных.

Для линейной регрессии m = 1 .

Для нелинейной регрессии вместо r 2 xy используется R 2.

F табл – максимально возможное значение критерия под влиянием случайных факторов при степенях свободы k1 = m , k2 = n – m – 1 (для линейной регрессии m = 1) и уровне значимости α.

Уровень значимости α вероятность отвергнуть правильную гипотезу

при условии, что она верна. Обычно величина α принимается равной 0,05 или

Если F табл < F факт, то Н0 -гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов линейной регрессии и линейного коэффициента парной корреляции применяется

t- критерий Стьюдента и рассчитываются доверительные интервалы каждого

из показателей.

Согласно t- критерию выдвигается гипотеза Н0 о случайной природе показателей, т. е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия t факт для оцениваемых коэффициентов регрессии и коэффициента корреляции путем сопоставления их значений с величиной стандартной ошибки

Стандартные ошибки параметров линейной регрессии и коэффициента

корреляции определяются по формулам

Сравнивая фактическое и критическое (табличное) значения t- статистики

t табл и t факт принимают или отвергают гипотезу Но.

t табл – максимально возможное значение критерия под влиянием случайных факторов при данной степени свободы k = n– 2 и уровне значимости α.

Связь между F- критерием Фишера (при k 1 = 1; m =1) и t- критерием Стьюдента выражается равенством

Если t табл < t факт, то Но отклоняется, т. е. a, b и не случайно отличаются

от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт, то гипотеза Но не отклоняется и признается случайная природа формирования а, b или https://pandia.ru/text/78/146/images/image041_2.jpg" width="574" height="59">

F табл определяется из таблицы при степенях свободы k 1 = 1, k 2 = n –2 и при

заданном уровне значимости α. Если F табл < F факт, то признается статистическая значимость коэффициента детерминации. В формуле (1.6) величина m означает число параметров при переменных в соответствующем уравнении регрессии.

1.5. Расчет доверительных интервалов

Рассчитанные значения показателей (коэффициенты a , b , ) являются

приближенными, полученными на основе имеющихся выборочных данных.

Для оценки того, насколько точные значения показателей могут отличаться от рассчитанных, осуществляется построение доверительных интервалов.

Доверительные интервалы определяют пределы, в которых лежат точные значения определяемых показателей с заданной степенью уверенности, соответствующей заданному уровню значимости α.

Для расчета доверительных интервалов для параметров a и b уравнения линейной регрессии определяем предельную ошибку Δ для каждого показателя:

Величина t табл представляет собой табличное значение t- критерия Стьюдента под влиянием случайных факторов при степени свободы k = n –2 и заданном уровне значимости α.

Формулы для расчета доверительных интервалов имеют следующий вид:

https://pandia.ru/text/78/146/images/image045_3.jpg" width="188" height="62">

где t γ – значение случайной величины, подчиняющейся стандартному нормальному распределению, соответствующее вероятности γ = 1 – α/2 (α – уровень значимости);

z’ = Z (rxy) – значение Z- распределения Фишера, соответствующее полученному значению линейного коэффициента корреляции rxy .

Граничные значения доверительного интервала (r– , r+ ) для rxy получаются

из граничных значений доверительного интервала (z– , z+ ) для z с помощью

функции, обратной Z- распределению Фишера

1.6. Точечный и интервальный прогноз по уравнению линейной

регрессии

Точечный прогноз заключается в получении прогнозного значения уp , которое определяется путем подстановки в уравнение регрессии

соответствующего (прогнозного
) значения x p

Интервальный прогноз заключается в построении доверительного интервала прогноза, т. е. нижней и верхней границ уpmin, уpmax интервала, содержащего точную величину для прогнозного значения https://pandia.ru/text/78/146/images/image050_2.jpg" width="37" height="44 src=">

и затем строится доверительный интервал прогноза , т. е. определяются нижняя и верхняя границы интервала прогноза

Контрольные вопросы:

1. Что понимается под парной регрессией?

2. Какие задачи решаются при построении уравнения регрессии?

3. Какие методы применяются для выбора вида модели регрессии?

4. Какие функции чаще всего используются для построения уравнения парной регрессии?

5. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае линейной регрессии?

6. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае гиперболической, показательной регрессии?

7. По какой формуле вычисляется линейный коэффициент парной корреляции r xy ?

8. Как строится доверительный интервал для линейного коэффициента парной корреляции?

9. Как вычисляется индекс корреляции?

10. Как вычисляется и что показывает индекс детерминации?

11. Как проверяется значимость уравнения регрессии и отдельных коэффициентов?

12. Как строится доверительный интервал прогноза в случае линейной регрессии?

Лабораторная работа № 1

Задание.1 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Вычислить линейный коэффициент парной корреляции.

2. Проверить значимость коэффициента парной корреляции.

3. Построить доверительный интервал для линейного коэффициента парной корреляции.

Задание. 2 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Построить предложенные уравнения регрессии, включая линейную регрессию.

2. Вычислить индексы парной корреляции для каждого уравнения.

3. Проверить значимость уравнений регрессии и отдельных коэффициентов линейного уравнения.

4. Определить лучшее уравнение регрессии на основе средней ошибки аппроксимации.

5. Построить интервальный прогноз для значения x = x max для линейного

уравнения регрессии.

Требования к оформлению результатов

Отчет о лабораторной работе должен содержать разделы:

1. Описание задания;

2. Описание решения лабораторной работы (по этапам);

3. Изложение полученных результатов.

Таблица П1

Исходные данные к лабораторным работам № 1, 2

Наличие предметов длительного пользования в домашних хозяйствах по регионам Российской Федерации (европейская часть территории без республик Северного Кавказа) (по материалам выборочного обследования бюджетов домашних хозяйств; на 100 домохозяйств; штук)

Многомерный регрессионный анализ позволяет разграничить влияние факторных признаков. Параметр регрессии при каждом факторном признакедает оценку его влияния на величину результативного признака
в случае изменения на единицу при постоянстве всех остальных факторов.

Прогнозирование на основе полученной модели выполняется аналогично прогнозам парной линейной регрессии.

Точечный прогноз получается при подстановке прогнозных значений факторных признаковв уравнение регрессии. Полученное значение является точечным прогнозом результативного признака
.

Интервальный прогноз указывает нижнюю и верхнюю границу промежутка, в котором находится истинное значение прогнозируемого показателя
. Доверительный интервал определяется выражением

т.е. истинное значение прогнозируемого показателя
с вероятностью 1 -принадлежит доверительному интервалу.

Пример 3.9. По данным таблицы 3.17 записать уравнение регрессии и выполнить анализ полученной модели.

Решение. Так как инструмент «Регрессия» может выполнять только линейный регрессионный анализ, то в итоге имеем следующее уравнение многомерной линейной регрессии

Таблица 3.17. Результаты работы инструментаРегрессия

Выполним анализ полученной модели регрессии:


Следовательно, модель регрессии пригодна для принятия некоторых решений, но не для прогнозирования.

Проанализируем наличие парной корреляционной связи между факторными признаками, входящими в модель регрессии, по корреляционной матрице (рис.3.8):



Рис.3.8. Корреляционная матрица

Обозначения к корреляционной матрице: - производительность труда (среднегодовая выработка продукции на одного работника), тыс. грн.;
- трудоемкость единицы продукции;
- удельный вес рабочих в составе промышленно-производственного персонала;
-коэффициент сменности оборудования;- премии и вознаграждения на одного работника, %;
- непроизводственные расходы, %.

Следовательно, на основе исследуемой многомерной выборки можно сделать вывод, что из рассматриваемых факторных признаков на производительность труда оказывают влияние трудоемкость единицы продукции и премии. Эти факторные признаки следует включить в модель многомерной нелинейной регрессии.

Так как коэффициент детерминации сравнительно мал, то при разработке модели регрессии следует рассмотреть дополнительные неучтенные факторные признаки.

В таблице 3.18 приведены результаты работы инструмента «Регрессия» для модели регрессии без факторного признака
Выполните анализ этой модели регрессии.


© 2024
reaestate.ru - Недвижимость - юридический справочник