12.09.2019

Определить линейный коэффициент корреляции пример. Линейный и множественный коэффициенты корреляции. Сущность и экономическая интерпретация


Коэффициент корреляции (или линейный коэффициент корреляции) обозначается как «r» (в редких случаях как «ρ») и характеризует линейную корреляцию (то есть взаимосвязь, которая задается некоторым значением и направлением) двух или более переменных. Значение коэффициента лежит между -1 и +1, то есть корреляция бывает как положительной, так и отрицательной. Если коэффициент корреляции равен -1, имеет место идеальная отрицательная корреляция; если коэффициент корреляции равен +1, имеет место идеальная положительная корреляция. В остальных случаях между двумя переменными наблюдается положительная корреляция, отрицательная корреляция или отсутствие корреляции. Коэффициент корреляции можно вычислить вручную, с помощью бесплатных онлайн-калькуляторов или с помощью хорошего графического калькулятора.

Шаги

Вычисление коэффициента корреляции вручную

    Соберите данные. Перед тем как приступить к вычислению коэффициента корреляции, изучите данные пары чисел. Лучше записать их в таблицу, которую можно расположить вертикально или горизонтально. Каждую строку или столбец обозначьте как «х» и «у».

    • Например, даны четыре пары значений (чисел) переменных «х» и «у». Можно создать следующую таблицу:
      • x || y
      • 1 || 1
      • 2 || 3
      • 4 || 5
      • 5 || 7
  1. Вычислите среднее арифметическое «х». Для этого сложите все значения «х», а затем полученный результат разделите на количество значений.

    • В нашем примере даны четыре значения переменной «х». Чтобы вычислить среднее арифметическое «х», сложите эти значения, а затем сумму разделите на 4. Вычисления запишутся так:
    • μ x = (1 + 2 + 4 + 5) / 4 {\displaystyle \mu _{x}=(1+2+4+5)/4}
    • μ x = 12 / 4 {\displaystyle \mu _{x}=12/4}
    • μ x = 3 {\displaystyle \mu _{x}=3}
  2. Найдите среднее арифметическое «у». Для этого выполните аналогичные действия, то есть сложите все значения «у», а затем сумму разделите на количество значений.

    • В нашем примере даны четыре значения переменной «у». Сложите эти значения, а затем сумму разделите на 4. Вычисления запишутся так:
    • μ y = (1 + 3 + 5 + 7) / 4 {\displaystyle \mu _{y}=(1+3+5+7)/4}
    • μ y = 16 / 4 {\displaystyle \mu _{y}=16/4}
    • μ y = 4 {\displaystyle \mu _{y}=4}
  3. Вычислите стандартное отклонение «х». Вычислив средние значения «х» и «у», найдите стандартные отклонения этих переменных. Стандартное отклонение вычисляется по следующей формуле:

    • σ x = 1 n − 1 Σ (x − μ x) 2 {\displaystyle \sigma _{x}={\sqrt {{\frac {1}{n-1}}\Sigma (x-\mu _{x})^{2}}}}
    • σ x = 1 4 − 1 ∗ ((1 − 3) 2 + (2 − 3) 2 + (4 − 3) 2 + (5 − 3) 2) {\displaystyle \sigma _{x}={\sqrt {{\frac {1}{4-1}}*((1-3)^{2}+(2-3)^{2}+(4-3)^{2}+(5-3)^{2})}}}
    • σ x = 1 3 ∗ (4 + 1 + 1 + 4) {\displaystyle \sigma _{x}={\sqrt {{\frac {1}{3}}*(4+1+1+4)}}}
    • σ x = 1 3 ∗ (10) {\displaystyle \sigma _{x}={\sqrt {{\frac {1}{3}}*(10)}}}
    • σ x = 10 3 {\displaystyle \sigma _{x}={\sqrt {\frac {10}{3}}}}
    • σ x = 1 , 83 {\displaystyle \sigma _{x}=1,83}
  4. Вычислите стандартное отклонение «у». Выполните действия, которые описаны в предыдущем шаге. Воспользуйтесь той же формулой, но подставьте в нее значения «у».

    • В нашем примере вычисления запишутся так:
    • σ y = 1 4 − 1 ∗ ((1 − 4) 2 + (3 − 4) 2 + (5 − 4) 2 + (7 − 4) 2) {\displaystyle \sigma _{y}={\sqrt {{\frac {1}{4-1}}*((1-4)^{2}+(3-4)^{2}+(5-4)^{2}+(7-4)^{2})}}}
    • σ y = 1 3 ∗ (9 + 1 + 1 + 9) {\displaystyle \sigma _{y}={\sqrt {{\frac {1}{3}}*(9+1+1+9)}}}
    • σ y = 1 3 ∗ (20) {\displaystyle \sigma _{y}={\sqrt {{\frac {1}{3}}*(20)}}}
    • σ y = 20 3 {\displaystyle \sigma _{y}={\sqrt {\frac {20}{3}}}}
    • σ y = 2 , 58 {\displaystyle \sigma _{y}=2,58}
  5. Запишите основную формулу для вычисления коэффициента корреляции. В эту формулу входят средние значения, стандартные отклонения и количество (n) пар чисел обеих переменных. Коэффициент корреляции обозначается как «r» (в редких случаях как «ρ»). В этой статье используется формула для вычисления коэффициента корреляции Пирсона.

    • Здесь и в других источниках величины могут обозначаться по-разному. Например, в некоторых формулах присутствуют «ρ» и «σ», а в других «r» и «s». В некоторых учебниках приводятся другие формулы, но они являются математическими аналогами приведенной выше формулы.
  6. Вы вычислили средние значения и стандартные отклонения обеих переменных, поэтому можно воспользоваться формулой для вычисления коэффициента корреляции. Напомним, что «n» – это количество пар значений обеих переменных. Значение других величин были вычислены ранее.

    • В нашем примере вычисления запишутся так:
    • ρ = (1 n − 1) Σ (x − μ x σ x) ∗ (y − μ y σ y) {\displaystyle \rho =\left({\frac {1}{n-1}}\right)\Sigma \left({\frac {x-\mu _{x}}{\sigma _{x}}}\right)*\left({\frac {y-\mu _{y}}{\sigma _{y}}}\right)}
    • ρ = (1 3) ∗ {\displaystyle \rho =\left({\frac {1}{3}}\right)*} [ (1 − 3 1 , 83) ∗ (1 − 4 2 , 58) + (2 − 3 1 , 83) ∗ (3 − 4 2 , 58) {\displaystyle \left({\frac {1-3}{1,83}}\right)*\left({\frac {1-4}{2,58}}\right)+\left({\frac {2-3}{1,83}}\right)*\left({\frac {3-4}{2,58}}\right)}
      + (4 − 3 1 , 83) ∗ (5 − 4 2 , 58) + (5 − 3 1 , 83) ∗ (7 − 4 2 , 58) {\displaystyle +\left({\frac {4-3}{1,83}}\right)*\left({\frac {5-4}{2,58}}\right)+\left({\frac {5-3}{1,83}}\right)*\left({\frac {7-4}{2,58}}\right)} ]
    • ρ = (1 3) ∗ (6 + 1 + 1 + 6 4 , 721) {\displaystyle \rho =\left({\frac {1}{3}}\right)*\left({\frac {6+1+1+6}{4,721}}\right)}
    • ρ = (1 3) ∗ 2 , 965 {\displaystyle \rho =\left({\frac {1}{3}}\right)*2,965}
    • ρ = (2 , 965 3) {\displaystyle \rho =\left({\frac {2,965}{3}}\right)}
    • ρ = 0 , 988 {\displaystyle \rho =0,988}
  7. Проанализируйте полученный результат. В нашем примере коэффициент корреляции равен 0,988. Это значение некоторым образом характеризует данный набор пар чисел. Обратите внимание на знак и величину значения.

    • Так как значение коэффициента корреляции положительно, между переменными «х» и «у» имеет место положительная корреляция. То есть при увеличении значения «х», значение «у» тоже увеличивается.
    • Так как значение коэффициента корреляции очень близко к +1, значения переменных «х» и «у» сильно взаимосвязаны. Если нанести точки на координатную плоскость, они расположатся близко к некоторой прямой.

    Использование онлайн-калькуляторов для вычисления коэффициента корреляции

    1. В интернете найдите калькулятор для вычисления коэффициента корреляции. Этот коэффициент довольно часто вычисляется в статистике. Если пар чисел много, вычислить коэффициент корреляции вручную практически невозможно. Поэтому существуют онлайн-калькуляторы для вычисления коэффициента корреляции. В поисковике введите «коэффициент корреляции калькулятор» (без кавычек).

    2. Введите данные. Ознакомьтесь с инструкциями на сайте, чтобы правильно ввести данные (пары чисел). Крайне важно вводить соответствующие пары чисел; в противном случае вы получите неверный результат. Помните, что на разных веб-сайтах различные форматы ввода данных.

      • Например, на сайте http://ncalculators.com/statistics/correlation-coefficient-calculator.htm значения переменных «х» и «у» вводятся в двух горизонтальных строках. Значения разделяются запятыми. То есть в нашем примере значения «х» вводятся так: 1,2,4,5, а значения «у» так: 1,3,5,7.
      • На другом сайте, http://www.alcula.com/calculators/statistics/correlation-coefficient/ , данные вводятся по вертикали; в этом случае не перепутайте соответствующие пары чисел.
    3. Вычислите коэффициент корреляции. Введя данные, просто нажмите на кнопку «Calculate», «Вычислить» или аналогичную, чтобы получить результат.

      Использование графического калькулятора

      1. Введите данные. Возьмите графический калькулятор, перейдите в режим статистических вычислений и выберите команду «Edit» (Редактировать).

        • На разных калькуляторах нужно нажимать различные клавиши. В этой статье рассматривается калькулятор Texas Instruments TI-86.
        • Чтобы перейти в режим статистических вычислений, нажмите – Stat (над клавишей «+»). Затем нажмите F2 – Edit (Редактировать).
      2. Удалите предыдущие сохраненные данные. В большинстве калькуляторов введенные статистические данные хранятся до тех пор, пока вы не сотрете их. Чтобы не спутать старые данные с новыми, сначала удалите любую сохраненную информацию.

        • С помощью клавиш со стрелками переместите курсор и выделите заголовок «xStat». Затем нажмите Clear (Очистить) и Enter (Ввести), чтобы удалить все значения, введенные в столбец xStat.
        • С помощью клавиш со стрелками выделите заголовок «yStat». Затем нажмите Clear (Очистить) и Enter (Ввести), чтобы удалить все значения, введенные в столбец уStat.
      3. Введите исходные данные. С помощью клавиш со стрелками переместите курсор в первую ячейку под заголовком «xStat». Введите первое значение и нажмите Enter. В нижней части экрана отобразится «xStat (1) = __», где вместо пробела будет стоять введенное значение. После того как вы нажмете Enter, введенное значение появится в таблице, а курсор переместится на следующую строку; при этом в нижней части экрана отобразится «xStat (2) = __».

        • Введите все значения переменной «х».
        • Введя все значения переменной «х», с помощью клавиш со стрелками перейдите в столбец yStat и введите значения переменной «у».
        • После ввода всех пар чисел нажмите Exit (Выйти), чтобы очистить экран и выйти из режима статистических вычислений.
      4. Вычислите коэффициент корреляции. Он характеризует, насколько близко данные расположены к некоторой прямой. Графический калькулятор может быстро определить подходящую прямую и вычислить коэффициент корреляции.

        • Нажмите Stat (Статистика) – Calc (Вычисления). На TI-86 нужно нажать – – .
        • Выберите функцию «Linear Regression» (Линейная регрессия). На TI-86 нажмите , которая обозначена как «LinR». На экране отобразится строка «LinR _» с мигающим курсором.
        • Теперь введите имена двух переменных: xStat и yStat.
          • На TI-86 откройте список имен; для этого нажмите – – .
          • В нижней строке экрана отобразятся доступные переменные. Выберите (для этого, скорее всего, нужно нажать F1 или F2), введите запятую, а затем выберите .
          • Нажмите Enter, чтобы обработать введенные данные.
      5. Проанализируйте полученные результаты. Нажав Enter, на экране отобразится следующая информация:

        • y = a + b x {\displaystyle y=a+bx} : это функция, которая описывает прямую. Обратите внимание, что функция записана не в стандартной форме (у = kх + b).
        • a = {\displaystyle a=} . Это координата «у» точки пересечения прямой с осью Y.
        • b = {\displaystyle b=} . Это угловой коэффициент прямой.
        • corr = {\displaystyle {\text{corr}}=} . Это коэффициент корреляции.
        • n = {\displaystyle n=} . Это количество пар чисел, которое было использовано в вычислениях.

Различные экономические явления как на микро-, так и на макроуровне не являются независимыми, а связаны между собой (цена товара и спрос на него, объём производства и прибыль фирмы и.т.д.).

Эта зависимость может быть строго функциональной (детермированной) и статистической.

Зависимость между и
называетсяфункциональной, когда каждому значению одного признака соответствует одно единственное значение другого признака. (Примером такой однозначной зависимости может служить зависимость площади круга от радиуса).

В реальной действительности чаще встречается иная связь между явлениями, когда каждому значению одного признака могут соответствовать несколько значений другого (например, связь между возрастом детей и их ростом).

Форма связи, при которой один или несколько взаимосвязанных показателей (факторов) оказывают влияние на другой показатель (результат) не однозначно, а с определенной долей вероятности, называется статистической . В частности, если при изменении одной из величин изменяется среднее значение другой, то в этом случае статистическую зависимость называют корреляционной .

В зависимости от числа факторов, включаемых в модель, различают парную корреляцию (связь двух переменных) и множественную (зависимость результата от нескольких факторов).

Корреляционный анализ состоит в определении направления, формы и степени связи (тесноты) между двумя (несколькими) случайными признаками
и.

По направлению корреляция бывает положительной (прямой) , если при увеличении значений одной переменной увеличивается значение другой, и отрицательной (обратной) , если при увеличении значений одной переменной, уменьшается значение другой.

По форме корреляционная связь может быть линейной (прямолинейной) , когда изменение значений одного признака приводит к равномерному изменению другого (математически описывается уравнением прямой
), икриволинейной , когда изменение значений одного признака приводит к неодинаковым изменениям другого (математически она описывается уравнениями кривых линий, например гиперболы
, параболы
и т.д.).

Простейшей формой зависимости между переменными является линейная зависимость. И проверка наличия такой зависимости, оценивание её индикаторов и параметров является одним из важнейших направлений эконометрики.

Существуют специальные статистические методы и, соответственно, показатели, значения которых определённым образом свидетельствуют о наличии или отсутствии линейной связи между переменными.

3.1. Коэффициент линейной корреляции

Наиболее простым, приближенным способом выявления корреляционной связи является графический .

При небольшом объеме выборки экспериментальные данные представляют в виде двух рядов связанных между собой значений и. Если каждую пару
представить точкой на плоскости
, то получится так называемоекорреляционное поле (рис.1).

Если корреляционное поле представляет собой эллипс, ось которого расположена слева направо и снизу вверх (рис.1в), то можно полагать, что между признаками существует линейная положительная связь.

Если корреляционное поле вытянуто вдоль оси слева направо и сверху вниз (рис.1г), то можно полагать наличие линейной отрицательной связи.

В случае же если точки наблюдений располагаются на плоскости хаотично, т.е корреляционное поле образует круг (рис.1а), то это свидетельствует об отсутствии связи между признаками.

На рис.1б представлена строгая линейная функциональная связь.

Под теснотой связи между двумя величинами понимают степень сопряженности между ними, которая обнаруживается с изменением изучаемых величин. Если каждому заданному значению
соответствуют близкие друг другу значения, то связь считается тесной (сильной); если же значениясильно разбросаны, то связь считается менее тесной. При тесной корреляционной связи корреляционное поле представляет собой более или менее сжатый эллипс.

Количественным критерием направления и тесноты линейной связи является коэффициент линейной корреляции .

Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции. Онвычисляется по формуле:

где , текущие значения признаков
и;и средние арифметические значения признаков;
- среднее арифметическое произведений вариант,
и
 средние квадратические отклонения этих признаков;  объём выборки.

Для вычисления коэффициента корреляции достаточно принять предположение о линейной связи между случайными признаками. Тогда вычисленный коэффициент корреляции и будет мерой этой линейной связи.

Коэффициент линейной корреляции принимает значения от −1 в случае строгой линейной отрицательной связи, до +1 в случае строгой линейной положительной связи (т.е.
). Близость коэффициента корреляции к 0 свидетельствует об отсутствиилинейной связи между признаками, но не об отсутствии связи между ними вообще.

Коэффициенту корреляции можно дать наглядную графическую интерпретацию.

Если
, то между признаками существует линейная функциональная зависимость вида
, что означаетполную корреляцию признаков. При
, прямая имеет положительный наклон по отношению к оси
, при
 отрицательный (рис. 1б).

Если
, точки
находятся в области ограниченной линией, напоминающей эллипс. Чем ближе коэффициент корреляции к
, тем уже эллипс и тем теснее точки сосредоточены вблизи прямой линии. При
говорят оположительной корреляции . В этом случае значения имеют тенденцию к возрастанию с увеличением(рис.1в). При
говорят оботрицательной корреляции ; значения имеют тенденцию к уменьшению с ростом(рис.1г).

Если
, то точки
располагаются в области, ограниченной окружностью. Это означает, что между случайными признаками
иотсутствует корреляция, и такие признаки называютсянекоррелированными (рис.1а).

При оценке тесноты связи можно использовать следующую условную таблицу:

Теснота связи

Величина коэффициента корреляции при наличии

прямой связи (+)

обратной связи (−)

Связь отсутствует

Связь слабая

Связь умеренная

Связь сильная

Полная функциональная

Заметим, что в числителе формулы для выборочного коэффициента линейной корреляции величин
ис тоит ихпоказатель ковариации :

Этот показатель, как и коэффициент корреляции характеризует степень линейной связи величин
и. Если он больше нуля, то связь между величинами положительная, если меньше нуля, то связь – отрицательная, равен нулю – линейная связь отсутствует.

В отличие от коэффициента корреляции показатель ковариации нормирован – он имеет размерность, и его величина зависит от единиц измерения
и. В статистическом анализе показатель ковариации обычно используется, как промежуточный элемент расчёта коэффициента линейной корреляции. Т.о. формула расчёта выборочного коэффициента корреляции приобретает вид:

характеризует тесноту и направление связи между двумя коррелируемыми признаками в случае наличия между ними линейной зависимости.
Линейный коэффициент корреляции имеет большое значение при исследовании социально - экономических явлений и процессов, распределение которых близко к нормальному.
На практике применяются различные модификации формул для расчета, данного коэффициента. Наиболее простой из них является зависимость вида
_ xy - x y
r (1 >
Физическая интерпретация значений коэффициента корреляции приведена в таблице1 . Таблица 1. Оценка линейного коэф(шциента корреляции Значение линейного коэффициента кор-реляции Характер связи Интерпретация связи г=0 Отсутствует - 0r
л/n - 2
"р _
(2)
i
(n - 2 _
1 - r
r
VT
Если расчетное значение t^ >t^ (табличное), то гипотеза Н0 отвергается, что свидетельствует о значимости линейного коэффициента корреляции, а следовательно, и о статистической существенности зависимости между Х иУ. Примечание! Данный критерий оценки значимости применяется для со-вокупностей nПри большем числе наблюдений (n>100) используется следующая формула для определения t - статистики
r
(3)
t„ = , - Vn
р I- 2
r
Пример. На основе выборочных данных о деловой активности однотипных предприятий оценить тесноту связи с помощью линейного коэффициента корреляции между прибылью У (тыс. руб.) и затратами (Х) в копейках на 1 руб. произведенной продукции (таблица. 2). Алгоритм расчета.
Рассчитываем значения дисперсии
ст2у = 78029,3; =46.
Рассчитываем значение коэффициента корреляции по формуле (1) r= (60400,67 - 744,33*83,67)/(78029,3*46)0"5 = -0,98.
Проверяем значимость коэффициента корреляции, для этого рассчитываем t - статистику Стьюдента
tp = n - 2 = (0,98/V1-(0,98)2)*V6-2 = 14,036.
V1 - r
Таблица № 2. - Исходные данные Предприятие Прибыль, тыс. Затраты, коп, х руб., у 1 221 96 2 1070 77 3 1001 77 4 606 89 5 779 82 6 789 81 Сравниваем полученное значение с табличным при уровне значимости a=0,05 и числе степеней свободы k =6-2=4, которое равно t кр =2,776.
Вывод. Гипотеза Н0 отвергается так как | tF|>t кр =2,776, что свидетельствует о значимости данного коэффициента корреляции.
Следует помнить! Приведенные выше зависимости и результаты практических расчетов относятся к предположениям о наличии линейной связи между оцениваемыми параметрами. В случае если заранее известно, что связь нелинейная то можно воспользоваться эмпирическим корреляционным отношением.

Различные экономические явления как на микро-, так и на макроуровне не являются независимыми, а связаны между собой (цена товара и спрос на него, объём производства и прибыль фирмы и.т.д.).

Эта зависимость может быть строго функциональной (детермированной) и статистической.

Зависимость между и называется функциональной, когда каждому значению одного признака соответствует одно единственное значение другого признака. (Примером такой однозначной зависимости может служить зависимость площади круга от радиуса).

В реальной действительности чаще встречается иная связь между явлениями, когда каждому значению одного признака могут соответствовать несколько значений другого (например, связь между возрастом детей и их ростом).

Форма связи, при которой один или несколько взаимосвязанных показателей (факторов) оказывают влияние на другой показатель (результат) не однозначно, а с определенной долей вероятности, называется статистической. В частности, если при изменении одной из величин изменяется среднее значение другой, то в этом случае статистическую зависимость называют корреляционной.

В зависимости от числа факторов, включаемых в модель, различают парную корреляцию (связь двух переменных) и множественную (зависимость результата от нескольких факторов).

Корреляционный анализ состоит в определении направления, формы и степени связи (тесноты) между двумя (несколькими) случайными признаками и.

По направлению корреляция бывает положительной (прямой), если при увеличении значений одной переменной увеличивается значение другой, и отрицательной (обратной), если при увеличении значений одной переменной, уменьшается значение другой.

По форме корреляционная связь может быть линейной (прямолинейной), когда изменение значений одного признака приводит к равномерному изменению другого (математически описывается уравнением прямой), и криволинейной, когда изменение значений одного признака приводит к неодинаковым изменениям другого (математически она описывается уравнениями кривых линий, например гиперболы, параболы и т.д.).

Простейшей формой зависимости между переменными является линейная зависимость. И проверка наличия такой зависимости, оценивание её индикаторов и параметров является одним из важнейших направлений эконометрики.

Существуют специальные статистические методы и, соответственно, показатели, значения которых определённым образом свидетельствуют о наличии или отсутствии линейной связи между переменными.

Коэффициент линейной корреляции

Наиболее простым, приближенным способом выявления корреляционной связи является графический.

При небольшом объеме выборки экспериментальные данные представляют в виде двух рядов связанных между собой значений и. Если каждую пару представить точкой на плоскости, то получится так называемое корреляционное поле (рис.1).

Если корреляционное поле представляет собой эллипс, ось которого расположена слева направо и снизу вверх (рис.1в), то можно полагать, что между признаками существует линейная положительная связь.

Если корреляционное поле вытянуто вдоль оси слева направо и сверху вниз (рис.1г), то можно полагать наличие линейной отрицательной связи.

В случае же если точки наблюдений располагаются на плоскости хаотично, т.е корреляционное поле образует круг (рис.1а), то это свидетельствует об отсутствии связи между признаками.

На рис.1б представлена строгая линейная функциональная связь.

Под теснотой связи между двумя величинами понимают степень сопряженности между ними, которая обнаруживается с изменением изучаемых величин. Если каждому заданному значению соответствуют близкие друг другу значения, то связь считается тесной (сильной); если же значения сильно разбросаны, то связь считается менее тесной. При тесной корреляционной связи корреляционное поле представляет собой более или менее сжатый эллипс.

Количественным критерием направления и тесноты линейной связи является коэффициент линейной корреляции.

Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции. Он вычисляется по формуле:

где, текущие значения признаков и; и средние арифметические значения признаков; - среднее арифметическое произведений вариант, и средние квадратические отклонения этих признаков; объём выборки.


Для вычисления коэффициента корреляции достаточно принять предположение о линейной связи между случайными признаками. Тогда вычисленный коэффициент корреляции и будет мерой этой линейной связи.

Коэффициент линейной корреляции принимает значения от?1 в случае строгой линейной отрицательной связи, до +1 в случае строгой линейной положительной связи (т.е.). Близость коэффициента корреляции к 0 свидетельствует об отсутствии линейной связи между признаками, но не об отсутствии связи между ними вообще.

Коэффициенту корреляции можно дать наглядную графическую интерпретацию.

Если, то между признаками существует линейная функциональная зависимость вида, что означает полную корреляцию признаков. При, прямая имеет положительный наклон по отношению к оси, при отрицательный (рис. 1б).

Если, точки находятся в области ограниченной линией, напоминающей эллипс. Чем ближе коэффициент корреляции к, тем уже эллипс и тем теснее точки сосредоточены вблизи прямой линии. При говорят о положительной корреляции. В этом случае значения имеют тенденцию к возрастанию с увеличением (рис.1в). При говорят об отрицательной корреляции; значения имеют тенденцию к уменьшению с ростом (рис.1г).

Если, то точки располагаются в области, ограниченной окружностью. Это означает, что между случайными признаками и отсутствует корреляция, и такие признаки называются некоррелированными (рис.1а).

Также коэффициент линейной корреляции может быть близок (равен) нулю, когда между признаками есть связь, но она нелинейная (рис.2).

При оценке тесноты связи можно использовать следующую условную таблицу:

Заметим, что в числителе формулы для выборочного коэффициента линейной корреляции величин и с тоит их показатель ковариации:

Этот показатель, как и коэффициент корреляции характеризует степень линейной связи величин и. Если он больше нуля, то связь между величинами положительная, если меньше нуля, то связь - отрицательная, равен нулю - линейная связь отсутствует.

В отличие от коэффициента корреляции показатель ковариации нормирован - он имеет размерность, и его величина зависит от единиц измерения и. В статистическом анализе показатель ковариации обычно используется, как промежуточный элемент расчёта коэффициента линейной корреляции. Т.о. формула расчёта выборочного коэффициента корреляции приобретает вид:

Оценка значимости (достоверности) коэффициента корреляции

Следует отметить, что истинным показателем степени линейной связи переменных является теоретический коэффициент корреляции, который рассчитывается на основании данных всей генеральной совокупности (т.е. всех возможных значений показателей):

где - теоретический показатель ковариции, который вычисляется как математическое ожидание произведений отклонений СВ и от их математических ожиданий.

Как правило, теоретический коэффициент корреляции мы рассчитать не можем. Однако из того, что выборочный коэффициент не равен нулю не следует, что теоретический коэффициент также (т.е. показатели могут быть линейно независимыми). Т.о. по данным случайной выборки нельзя утверждать, что связь между показателями существует.

Выборочный коэффициент корреляции является оценкой теоретического коэффициента, т.к. он рассчитывается лишь для части значений переменных.

Всегда существует ошибка коэффициента корреляции. Эта ошибка - расхождение между коэффициентом корреляции выборки объемом и коэффициентом корреляции для генеральной совокупности определяется формулами:

при; и при.

Проверка значимости коэффициента линейной корреляции означает проверку того, насколько мы можем доверять выборочным данным.

С этой целью проверяется нулевая гипотеза о том, что значение коэффициента корреляции для генеральной совокупности равно нулю, т.е. в генеральной совокупности отсутствует корреляция. Альтернативной является гипотеза.

Для проверки этой гипотезы рассчитывается - статистика (-критерий) Стьюдента:

Которая имеет распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента определяется критическое значение. Если рассчитанное значение критерия, то нуль-гипотеза отвергается, то есть вычисленный коэффициент корреляции значимо отличается от нуля с вероятностью.

Если же, тогда нулевая гипотеза не может быть отвергнута. В этом случае не исключается, что истинное значение коэффициента корреляции равно нулю, т.е. связь показателей можно считать статистически незначимой.

Пример 1. В таблице приведены данные за 8 лет о совокупном доходе и расходах на конечное потребление.

Изучить и измерить тесноту взаимосвязи между заданными показателями.

​ Критерий корреляции Пирсона – это метод параметрической статистики, позволяющий определить наличие или отсутствие линейной связи между двумя количественными показателями, а также оценить ее тесноту и статистическую значимость. Другими словами, критерий корреляции Пирсона позволяет определить, есть ли линейная связь между изменениями значений двух переменных. В статистических расчетах и выводах коэффициент корреляции обычно обозначается как r xy или R xy .

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон .

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой - определяются при помощи регрессионного анализа .
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа .
  4. Критерий корреляции Пирсона является параметрическим , в связи с чем условием его применения служит нормальное распределение сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена .
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Например, рост ребенка зависит от его возраста, то есть чем старше ребенок, тем он выше. Если мы возьмем двух детей разного возраста, то с высокой долей вероятности рост старшего ребенка будет больше, чем у младшего. Данное явление и называется зависимостью , подразумевающей причинно-следственную связь между показателями. Разумеется, между ними имеется и корреляционная связь , означающая, что изменения одного показателя сопровождаются изменениями другого показателя.

В другой ситуации рассмотрим связь роста ребенка и частоты сердечных сокращений (ЧСС). Как известно, обе эти величины напрямую зависят от возраста, поэтому в большинстве случаев дети большего роста (а значит и более старшего возраста) будут иметь меньшие значения ЧСС. То есть, корреляционная связь будет наблюдаться и может иметь достаточно высокую тесноту. Однако, если мы возьмем детей одного возраста , но разного роста , то, скорее всего, ЧСС у них будет различаться несущественно, в связи с чем можно сделать вывод о независимости ЧСС от роста.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Значения коэффициента корреляции Пирсона интерпретируются исходя из его абсолютных значений. Возможные значения коэффициента корреляции варьируют от 0 до ±1. Чем больше абсолютное значение r xy – тем выше теснота связи между двумя величинами. r xy = 0 говорит о полном отсутствии связи. r xy = 1 – свидетельствует о наличии абсолютной (функциональной) связи. Если значение критерия корреляции Пирсона оказалось больше 1 или меньше -1 – в расчетах допущена ошибка.

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения r xy < 0.3 свидетельствуют о слабой связи, значения r xy от 0.3 до 0.7 - о связи средней тесноты, значения r xy > 0.7 - о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока :

Оценка статистической значимости коэффициента корреляции r xy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

Полученное значение t r сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если t r превышает t крит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице.


© 2024
reaestate.ru - Недвижимость - юридический справочник