12.09.2019

Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания. Модели систем массового обслуживания


В качестве показателей эффективности СМО с отказами будем рассматривать:

1) A - абсолютную пропускную способность СМО , т.е. среднее число заявок, обслуживаемых в единицу времени;

2) Q - относительную пропускную способность , т.е. среднюю долю пришедших заявок, обслуживаемых системой;

3) P_{\text{otk}} - вероятность отказа , т.е. того, что заявка покинет СМО необслуженной;

4) \overline{k} - среднее число занятых каналов (для многоканальной системы).

Одноканальная система (СМО) с отказами

Рассмотрим задачу. Имеется один канал, на который поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.


Примечание. Здесь и в дальнейшем предполагается, что все потоки событий, переводящие СМО из состояния в состояние, будут простейшими. К ним относится и поток обслуживании - поток заявок, обслуживаемых одним непрерывно занятым каналом. Среднее время обслуживания обратно по величине интенсивности \mu , т.е. \overline{t}_{\text{ob.}}=1/\mu .

Система S (СМО) имеет два состояния: S_0 - канал свободен, S_1 - канал занят. Размеченный граф состояний представлен на рис. 6.

В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид (см. выше правило составления таких уравнений)

\begin{cases}\lambda\cdot p_0=\mu\cdot p_1,\\\mu\cdot p_1=\lambda\cdot p_0,\end{cases}


т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p_0+p_1=1 , найдем из (18) предельные вероятности состояний

P_0=\frac{\mu}{\lambda+\mu},\quad p_1=\frac{\lambda}{\lambda+\mu}\,


которые выражают среднее относительное время пребывания системы в состоянии S_0 (когда канал свободен) и S_1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P_{\text{otk}}:

Q=\frac{\mu}{\lambda+\mu}\,

P_{\text{otk}}=\frac{\lambda}{\lambda+\mu}\,.

Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов

A=\frac{\lambda\mu}{\lambda+\mu}\,.

Пример 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью \lambda , равной 90 заявок в час, а средняя продолжительность разговора по телефону мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем \lambda=90 (1/ч), \overline{t}_{\text{ob.}}=2 мин. Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{2}=0,\!5 (1/мин) =30 (1/ч). По (20) относительная пропускная способность СМО Q=\frac{30}{90+30}=0,\!25 , т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P_{\text{otk}}=0,\!75 (см. (21)). Абсолютная пропускная способность СМО по (29) A=90\cdot0.\!25=22,\!5 , т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система (СМО) с отказами

Рассмотрим классическую задачу Эрланга . Имеется n каналов, на которые поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S_0,S_1,S_2,\ldots,S_k,\ldots,S_n , где S_k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения и показан на рис. 7.

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью \lambda . Интенсивность же потока обслуживании, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S_2 (два канала заняты), то она может перейти в состояние S_1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2\mu . Аналогично суммарный поток обслуживании, переводящий СМО из состояния S_3 (три канала заняты) в S_2 , будет иметь интенсивность 3\mu , т.е. может освободиться любой из трех каналов и т.д.

В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния

P_0={\left(1+ \frac{\lambda}{\mu}+ \frac{\lambda^2}{2!\mu^2}+\ldots+\frac{\lambda^k}{k!\mu^k}+\ldots+ \frac{\lambda^n}{n!\mu^n}\right)\!}^{-1},

где члены разложения \frac{\lambda}{\mu},\,\frac{\lambda^2}{2!\mu^2},\,\ldots,\,\frac{\lambda^k}{k!\mu^k},\,\ldots,\, \frac{\lambda^n}{n!\mu^n} , будут представлять собой коэффициенты при p_0 в выражениях для предельных вероятностей p_1,p_2,\ldots,p_k,\ldots,p_n . Величина

\rho=\frac{\lambda}{\mu}


называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала . Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь

P_0={\left(1+\rho+\frac{\rho^2}{2!}+\ldots+\frac{\rho^k}{k!}+\ldots+\frac{\rho^n}{n!}\right)\!}^{-1},

P_1=\rho\cdot p,\quad p_2=\frac{\rho^2}{2!}\cdot p_0,\quad \ldots,\quad p_k=\frac{\rho^k}{k!}\cdot p_0,\quad \ldots,\quad p_n=\frac{\rho^n}{n!}\cdot p_0.

Формулы (25) и (26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все я каналов системы будут заняты, т.е.

P_{\text{otk}}= \frac{\rho^n}{n!}\cdot p_0.

Относительная пропускная способность - вероятность того, что заявка будет обслужена:

Q=1- P_{\text{otk}}=1-\frac{\rho^n}{n!}\cdot p_0.

Абсолютная пропускная способность:

A=\lambda\cdot Q=\lambda\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Среднее число занятых каналов \overline{k} есть математическое ожидание числа занятых каналов:

\overline{k}=\sum_{k=0}^{n}(k\cdot p_k),


где p_k - предельные вероятности состояний, определяемых по формулам (25), (26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы A есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем \mu заявок (в единицу времени), то среднее число занятых каналов

\overline{k}=\frac{A}{\mu}

Или, учитывая (29), (24):

\overline{k}=\rho\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Пример 6. В условиях примера 5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (25) \rho=\frac{90}{30}=3 , т.е. за время среднего (по продолжительности) телефонного разговора \overline{t}_{\text{ob.}}=2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n=2,3,4,\ldots и определим по формулам (25), (28), (29) для получаемой n-канальной СМО характеристики обслуживания. Например, при n=2 имеем

З_0={\left(1+3+ \frac{3^2}{2!}\right)\!}^{-1}=0,\!118\approx0,\!12;\quad Q=1-\frac{3^2}{2!}\cdot0,\!118=0,\!471\approx0,\!47;\quad A=90\cdot0,\!471=42,\!4 и т.д.


Значение характеристик СМО сведем в табл. 1.

По условию оптимальности Q\geqslant0,\!9 , следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q=0,\!9 - см. табл. 1). При этом в час будут обслуживаться в среднем 80 заявок (A=80,\!1) , а среднее число занятых телефонных номеров (каналов) по формуле (30) \overline{k}=\frac{80,\!1}{30}=2,\!67 .

Пример 7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию n=3,~\lambda=0,\!25 (1/ч), \overline{t}_{\text{ob.}} =3 (ч). Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{3}=0,\!33 . Интенсивность нагрузки ЭВМ по формуле (24) \rho=\frac{0,\!25}{0,\!33}=0,\!75 . Найдем предельные вероятности состояний:

– по формуле (25) p_0={\left(1+0,\!75+ \frac{0,\!75^2}{2!}+ \frac{0,\!75^3}{3!}\right)\!}^{-1}=0,\!476 ;

– по формуле (26) p_1=0,!75\cdot0,\!476=0,\!357;~p_2=\frac{0,\!75^2}{2!}\cdot0,\!476=0,\!134;~p_3=\frac{0,\!75^3}{3!}\cdot0,\!476=0,\!033 ;


т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, P_{\text{otk}}=p_3=0,\!033 .

По формуле (28) относительная пропускная способность центра Q=1-0,\!033=0,\!967 , т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (29) абсолютная пропускная способность центра A=0,\!25\cdot0,\!967=0,\!242 , т.е. в один час в среднем обслуживается. 0,242 заявки.

По формуле (30) среднее число занятых ЭВМ \overline{k}=\frac{0,\!242}{0,\!33}=0,\!725 , т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на \frac{72,\!5}{3}= 24,\!2%. .

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Краткая теория

Пусть в n-канальную систему массового обслуживания (СМО) поступает с интенсивностью простейший поток требований. Длительность обслуживания распределена по показательному закону со средним временем обслуживания . Если же все каналы обслуживания заняты, то вновь поступившее требование становится в очередь за ранее поступившими не обслуженными требованиями. Освободившийся канал приступает к обслуживанию очередного требования из очереди. Определим основные характеристики работы такой системы. Так как число требований, стоящих в очереди, может быть бесконечно большим, то и число состояний системы также может быть бесконечно большим.

Вероятность свободного состояния системы:

Последнее выражение получено при условии , которое является условием стационарности СМО. В случае система не справляется с обслуживанием, очередь неограниченно возрастает. Отношение обозначается через и называется уровнем загрузки системы:

Определим основные характеристики многоканальной СМО с ожиданием. Вероятность получения отказа равна нулю. Относительная пропускная способность -это величина, которая дополняет вероятность отказа до единицы: . Абсолютная пропускная способность . Определим среднее число занятых каналов: каждый занятый канал обслуживает в единицу времени в среднем заявок, а вся система - заявок. Тогда:

Коэффициент занятости каналов обслуживания:

Образование очереди возможно, когда вновь пост пившее требование застанет в системе не менее n требований, т. е. когда в системе будет находиться , , требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме вероятностей , Отсюда вероятность образования очереди:

Среднее число заявок в очереди можно вычислить как математическое ожидание, складывая произведения возможного числа заявок на вероятность того, что число заявок будет в очереди:

Среднее число заявок, связанных с системой:

Определим среднее время ожидания заявки в очереди . Очередь образуется, если все каналов заняты. Так как интенсивность обслуживания , то поток освобожденных каналов имеет интенсивность . Если заявка поступила в момент, когда заняты все каналов и очереди нет, то время ожидания составит в среднем , а если застанет одно требование в очереди, то , и так далее. Среднее время ожидания заявок в очереди найдем, суммируя произведения среднего времени ожидания на соответствующую вероятность:

Среднее время пребывания заявок в системе:

Формулы Литтла:

Среднее число простаивающих каналов обслуживания:

Коэффициент простоя каналов:

Пример решения задачи

Условие задачи

На строительном складе работают четыре кладовщика. Поток посетителей имеет с интенсивностью 2 заявки в минуту. Время обслуживания имеет показательное распределение со средним значением 1,5 минуты на заявку. Определить показатели работы склада.

Если вам необходима платная помощь в учебе с решением задач, об этом подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Как заказать решение задач по методам оптимальных решений...

Решение задачи

Отсюда следует, что вероятность того, что все четыре кладовщика простаивают, равна 0,05. Определим другие показатели работы системы.

Абсолютная пропускная способность склада, т. е. количество обслуживаемых в единицу времени требовании, (заявки в минуту). Среднее число занятых кладовщиков . Вероятность образования очереди, т. е. вероятность того, что в момент обращения заказчика все четыре кладовщика заняты:

Среднее число заявок в очереди:

Среднее время простаивания в очереди:

Среднее число заявок в системе:

Среднее время пребывания заявки в системе:

Среднее число простаивающих кладовщиков:

Если сроки со сдачей контрольной работы поджимают, то тогда за деньги на сайте можно выполнить вашу контрольную работу по методам оптимальных решений .

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Все вопросы по стоимости можете задать прямо в чат, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Многоканальная СМО с отказами
Приведены необходимые теоретические сведения, в частности формулы Эрланга, а также образец решения задачи по теме "Многоканальная система массового обслуживания с отказами". Подробно рассмотрены показатели многоканальной системы массового обслуживания (СМО) с отказами - вероятность отказа и вероятность обслуживания, абсолютная пропускная способность системы и среднее число каналов, занятых обслуживанием заявки.

Сетевое планирование - график работ
На примере решения задачи рассмотрены вопросы построения сетевого графика работ, нахождение критического пути и критического времени. Также показано вычисление параметров и резервов событий и работ - ранних и поздних сроков, общих (полных) и частных резервов.

Межотраслевая модель Леонтьева
На примере решения задачи рассмотрена межотраслевая модель Леонтьева. Показано вычисление матрицы коэффициентов прямых материальных затрат, матрицы «затраты-выпуск», матрицы коэффициентов косвенных затрат, векторов конечного потребления и валового выпуска.

Абсолютная пропускная способность характеризует интенсивность выходящего потока обслуженных заявок.

Пример . На станцию технического обслуживания поступает простейший поток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.

Решение:
Определяем тип СМО. Фраза « На станцию» говорит об единственном устройстве обслуживания, т.е. для проверки решения используем сервис Одноканальные СМО .
Определяем вид одноканальной СМО. Поскольку имеется упоминание об очереди, следовательно выбираем «Одноканальная СМО с ограниченной длиной очереди».
Параметр λ необходимо выразить в часах. Интенсивность заявок 1 автомобиль за 2 ч или 0,5 за 1 час.
Интенсивность потока обслуживания μ явно не задана. Здесь приводится время обслуживания t обс = 2 часа.

Исчисляем показатели обслуживания для одноканальной СМО:
Интенсивность потока обслуживания:

1. Интенсивность нагрузки .
ρ = λ t обс = 0.5 2 = 1
Интенсивность нагрузки ρ=1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

3. Вероятность, что канал свободен (доля времени простоя канала).


Следовательно, 20% в течение часа канал будет не занят, время простоя равно t пр = 12 мин.

4. Доля заявок, получивших отказ .
Заявки не получают отказ. Обслуживаются все поступившие заявки, p отк = 0.

5. Относительная пропускная способность .
Доля обслуживаемых заявок, поступающих в единицу времени:
Q = 1 - p отк = 1 - 0 = 1
Следовательно, 100% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

6. Абсолютная пропускная способность .
A = Q λ = 1 0.5 = 0.5 заявок/час.

8. Среднее число заявок в очереди (средняя длина очереди).

ед.

9. Среднее время простоя СМО (среднее время ожидания обслуживания заявки в очереди).
час.

10. Среднее число обслуживаемых заявок .
L обс = ρ Q = 1 1 = 1 ед.

12. Среднее число заявок в системе .
L CMO = L оч + L обс = 1.2 + 1 = 2.2 ед.

13. Среднее время пребывания заявки в СМО .
час.

Число заявок, получивших отказ в течение час: λ p 1 = 0 заявок в час.
Номинальная производительность СМО: 1 / 2 = 0.5 заявок в час.
Фактическая производительность СМО: 0.5 / 0.5 = 100% от номинальной производительности.

Вывод: станция загружена на 100%. При этом отказов не наблюдается.

1) одноканальная СМО

В предельном (стационарном) режиме система уравнений Колмогорова:

Учитывая нормировочное условие p 0 + p 1 = 1, найдем:

которые выражают среднее относительное время пребывания системы в состоянии S 0 (когда канал свободен) и S 1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность системы q и вероятность отказа P отк:

Абсолютная пропускная способность: .

Задача 1. Известно, что заявки в ателье поступают с интенсивностью?=90 (заявок в час), а средняя продолжительность разговора по телефону t об = 2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение.

Интенсивность потока обслуживания?= 1/ t об =1/2 = 0,5(1/мин) = 30 (1/ч).

Относительная пропускная способность СМО q = 30/(30+90) = 0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P отк = 0,75. Абсолютная пропускная способность СМО: Q = 90*0,25 = 22,5, т.е. в среднем в час будут обслужены 22,5 заявки.

Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

2) многоканальная СМО

Система уравнений Колмогорова имеет вид:


В стационарном режиме:

Разрешим систему (1) относительно неизвестных p 0 , p 1 ,..., p m . Из первого уравнения:

Из второго с учетом (2):

Аналогично из третьего, с учетом (2) и (3):

и вообще, для любого k ? m:

Введем обозначение:

Определяет среднее число требований, поступающих в СМО за среднее время обслуживания одной заявки (приведенная плотность потока заявок).

Формула (6) выражает все вероятности p k через p 0 . Воспользуемся условием:

Подставляя (7) в (6), получим, 0 ? k ? m. (8)

Формулы (7) и (8) называют формулами Эрланга. Полагая в формуле (8) k = m, получим вероятность отказа

Относительная пропускная способность (вероятность того, что заявка будет обслужена):

Формулы Эрланга и их следствия (9), (10) выведены для случая показательного закона распределения времени обслуживания. Но исследования последних лет показали, что эти формулы остаются справедливыми при любом законе распределения времени обслуживания, лишь бы входной поток был простейшим. Также формулами Эрланга можно пользоваться (с известным приближением) и в случае, когда поток заявок отличается от простейшего (например, является стационарным потоком с ограниченным последействием). Наконец, формулами Эрланга можно приближенно пользоваться и в случае, когда СМО допускает ожидание заявки в очереди, но когда срок ожидания мал по сравнению со средним временем обслуживания одной заявки.

Абсолютная пропускная способность:

Среднее число занятых каналов есть математическое ожидание числа занятых каналов:

или или, учитывая (11) и (5)

При большом числе каналов обслуживания применяют следующие формулы, которые также называются формулами Эрланга:

При больших значениях i:

функция Лапласа.

Вероятность отказа: (9")

Относительная пропускная способность

Среднее число занятых каналов:

Задача 2. В условиях предыдущей задачи определить оптимальное число телефонных номеров в ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (5) ? = 90/30 = 3, т.е. за время среднего (по продолжительности) телефонного разговора t об = 2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n = 2, 3, 4,... и определим по формулам (7), (10), (11) для получаемой n-канальной СМО характеристики обслуживания. Например, при n = 2

Значения характеристик СМО представим в таблице:

По условию оптимальности q ? 0,9, следовательно, в ателье необходимо установить 5 телефонных номеров (в этом случае q = 0,9). При этом в час будут обслуживаться в среднем 80 заявок (Q = 80,1), а среднее число занятых телефонных номеров (каналов)

Задача 3. Автоматическая телефонная станция обеспечивает не более 120 переговоров одновременно. Средняя продолжительность разговора 60 секунд, а вызовы поступают в среднем через 0,5 секунды. Рассматривая такую станцию как многоканальную систему обслуживания с отказами и простейшим входным потоком, определить: а) среднее число занятых каналов, б) относительную пропускную способность, в) среднее время пребывания вызова на станции с учетом того, что разговор может и не состояться.

Решение. Имеем: m = 120; ? = 1/0,5 = 2; ? = 1/60; ? = ?/? = 120.

Используя таблицы функции Лапласа, получаем:

так как? есть интенсивность входного потока (число заявок в единицу времени), то?t ср = и.

2 . СМО с ожиданием и ограниченным временем ожидания.

Имеется m каналов обслуживания, входной поток - простейший с интенсивностью?, время обслуживания и время ожидания - СВ, распределенные по экспоненциальному закону с параметрами? и? соответственно.

Если занято i каналов и i ? m, то в силу независимости их функционирования интенсивность обслуживания возрастает в i раз: ? i,i-1 = i?. При возникновении очереди каждое состояние рассматриваемой СМО характеризуется занятостью каналов обслуживания. Поэтому интенсивность освобождения каналов становится постоянной u = m?.

Закон распределения времени ожидания определяется интенсивностью? ухода из очереди при наличии в ней одной заявки. В силу независимости поступления заявок (см. определение простейшего потока) интенсивность, с которой заявки отказываются от обслуживания и уходят из очереди, равна r? (для очереди длины r ? 1). Т.о., плотность вероятности перехода системы из состояния S m+r в состояние S m+r-1 равна сумме интенсивностей освобождения каналов обслуживания и отказа от обслуживания: ? m+r,m+r-1 = m? + r?.

Составим уравнения Колмогорова:


i=1,..., m-1, r ? 0.

Если на длину очереди не накладывать ограничений, то система обыкновенных дифференциальных уравнений (1) является бесконечной.

Если в начальный момент времени t = 0 рассматриваемая система находилась в одном из своих возможных состояний S j , то начальные условия для нее выглядят следующим образом.

где λ – это интенсивность поступления заявок в СМО.

Пример .

Вычислить показатели обслуживания для одноканальной СМО, в которую заявки поступают с интенсивностью λ=1,2 заявки в час, время обслуживания t обс =2,5 часа. Исчисляем показатели обслуживания для одноканальной СМО:

    Интенсивность нагрузки .

ρ = λ t обс = 1,2 2,5 = 3

Интенсивность нагрузки ρ=3 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

t пр = 15 мин.

    Доля заявок, получивших отказ . p 1 = 1 - p 0 = 1 - 0.25 = 0.75

Значит, 75% из числа поступивших заявок не принимаются к обслуживанию.

    Доля обслуживаемых заявок, поступающих в единицу времени:

    Абсолютная пропускная способность .

A = Q λ = 0.25 1.2 = 0.3 заявок/мин.

    Среднее время простоя СМО .

t пр = p отк t обс = 0.75 2.5 = 1.88 мин.

    Среднее число обслуживаемых заявок .

L обс = ρ Q = 3 0.25 = 0.75 ед

    Число заявок, получивших отказ в течение мин: λ p 1 = 0.9 заявок в мин. Номинальная производительность СМО: 1 / 2.5 = 0.4 заявок в мин. Фактическая производительность СМО: 0.3 / 0.4 = 75% от номинальной производительности.

Абсолютная пропускная способность смо. Пример решения

На станцию технического обслуживания поступает простейший поток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.

Решение: Определяем тип СМО. Фраза «На станцию» говорит об единственном устройстве обслуживания, т.е. для решения используем формулы для одноканальной СМО. Определяем вид одноканальной СМО. Поскольку имеется упоминание об очереди, следовательно выбираем «Одноканальная СМО с ограниченной длиной очереди». Параметр λ необходимо выразить в часах. Интенсивность заявок 1 автомобиль за 2 ч или 0,5 за 1 час.

Интенсивность потока обслуживания μ явно не задана. Здесь приводится время обслуживания t обс = 2 часа.

Исчисляем показатели обслуживания для одноканальной СМО:

    Интенсивность потока обслуживания:

    Интенсивность нагрузки .

ρ = λ t обс = 0.5 2 = 1

Интенсивность нагрузки ρ=1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

Заявки не получают отказ. Обслуживаются все поступившие заявки, p отк = 0.

    Относительная пропускная способность .

Доля обслуживаемых заявок, поступающих в единицу времени: Q = 1 - p отк = 1 - 0 = 1

Следовательно, 100% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

Число заявок, получивших отказ в течение час: λ p 1 = 0 заявок в час. Номинальная производительность СМО: 1 / 2 = 0.5 заявок в час. Фактическая производительность СМО: 0.5 / 0.5 = 100% от номинальной производительности.

Вывод: станция загружена на 100%. При этом отказов не наблюдается.


© 2024
reaestate.ru - Недвижимость - юридический справочник