14.09.2019

Мультипликативная модель факторного анализа. Метод линейного программирования. Виды мультипликативных индексных двухфакторных моделей


Задание . На основе данных, скорректированных на инфляцию, о прибыли компании за 12 кварталов (табл.) построить мультипликативной модель тренда и сезонности для прогнозирования прибыли компании на следующие два квартала. Дать общую характеристику точности модели и сделать выводы.

Решение проводим с помощью калькулятора Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 375 - - -
2 371 657.5 - -
3 869 653 655.25 1.33
4 1015 678 665.5 1.53
5 357 708.75 693.38 0.51
6 471 710 709.38 0.66
7 992 718.25 714.13 1.39
8 1020 689.25 703.75 1.45
9 390 689.25 689.25 0.57
10 355 660.5 674.88 0.53
11 992 678.25 669.38 1.48
12 905 703 690.63 1.31
13 461 685 694 0.66
14 454 690.5 687.75 0.66
15 920 - - -
16 927 - - -

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.33 1.53
2 0.51 0.66 1.39 1.45
3 0.57 0.53 1.48 1.31
4 0.66 0.66 - -
Всего за период 1.74 1.85 4.2 4.28
Средняя оценка сезонной компоненты 0.58 0.62 1.4 1.43
Скорректированная сезонная компонента, S i 0.58 0.61 1.39 1.42

Для данной модели имеем:
0.582 + 0.617 + 1.399 + 1.428 = 4.026
Корректирующий коэффициент: k=4/4.026 = 0.994
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
16a 0 + 136a 1 = 10872.41
136a 0 + 1496a 1 = 93531.1
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 0 = 3.28, a 1 = 651.63
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10872.41}/{16} = 679.53
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 648.87 1 421026.09 648.87 654.92 940.05 36.61
2 605.46 4 366584.89 1210.93 658.2 5485.32 2780.93
3 625.12 9 390770.21 1875.35 661.48 2960.37 1322.21
4 715.21 16 511519.56 2860.82 664.76 1273.1 2544.83
5 617.72 25 381577.63 3088.6 668.04 3819.95 2532.22
6 768.66 36 590838.18 4611.96 671.32 7944.97 9474.64
7 713.6 49 509219.75 4995.17 674.6 1160.83 1520.44
8 718.73 64 516571.58 5749.83 677.88 1536.93 1668.26
9 674.82 81 455381.82 6073.38 681.17 22.14 40.28
10 579.35 100 335647.52 5793.51 684.45 10034.93 11045.26
11 713.6 121 509219.75 7849.56 687.73 1160.83 669.14
12 637.7 144 406656.13 7652.35 691.01 1749.71 2842.39
13 797.67 169 636280.07 10369.73 694.29 13958.53 10687.5
14 740.92 196 548957.15 10372.83 697.57 3768.85 1878.69
15 661.8 225 437983.3 9927.05 700.85 314.08 1524.97
16 653.2 256 426667.57 10451.17 704.14 693.14 2594.6
136 10872.41 1496 7444901.2 93531.1 10872.41 56823.71 53162.96

Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 651.634 + 3.281t
Подставляя в это уравнение значения t = 1,...,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 375 0.58 648.87 654.92 378.5 0.99 12.23
2 371 0.61 605.46 658.2 403.31 0.92 1044.15
3 869 1.39 625.12 661.48 919.55 0.95 2555.16
4 1015 1.42 715.21 664.76 943.41 1.08 5125.42
5 357 0.58 617.72 668.04 386.08 0.92 845.78
6 471 0.61 768.66 671.32 411.36 1.14 3557.43
7 992 1.39 713.6 674.6 937.79 1.06 2938.24
8 1020 1.42 718.73 677.88 962.03 1.06 3359.96
9 390 0.58 674.82 681.17 393.67 0.99 13.45
10 355 0.61 579.35 684.45 419.4 0.85 4147.15
11 992 1.39 713.6 687.73 956.04 1.04 1293.1
12 905 1.42 637.7 691.01 980.66 0.92 5724.7
13 461 0.58 797.67 694.29 401.25 1.15 3569.68
14 454 0.61 740.92 697.57 427.44 1.06 705.39
15 920 1.39 661.8 700.85 974.29 0.94 2946.99
16 927 1.42 653.2 704.14 999.29 0.93 5225.65

Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 16
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10874}/{16} = 679.63
16 927 61194.39 136 10874 1252743.75

R^{2} = 1 - {43064.467}/{1252743.75} = 0.97
Следовательно, можно сказать, что мультипликативная модель объясняет 97% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.
F = {R^{2}}/{1 - R^{2}}{(n - m -1)}/{m} = {0.97^{2}}/{1 - 0.97^{2}}{(16-1-1)}/{1} = 393.26
где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.6
Поскольку F > Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 651.634 + 3.281t
Получим
T 17 = 651.634 + 3.281*17 = 707.416
Значение сезонного компонента за соответствующий период равно: S 1 = 0.578
Таким образом, F 17 = T 17 + S 1 = 707.416 + 0.578 = 707.994
T 18 = 651.634 + 3.281*18 = 710.698
Значение сезонного компонента за соответствующий период равно: S 2 = 0.613
Таким образом, F 18 = T 18 + S 2 = 710.698 + 0.613 = 711.311
T 19 = 651.634 + 3.281*19 = 713.979
Значение сезонного компонента за соответствующий период равно: S 3 = 1.39
Таким образом, F 19 = T 19 + S 3 = 713.979 + 1.39 = 715.369
T 20 = 651.634 + 3.281*20 = 717.26
Значение сезонного компонента за соответствующий период равно: S 4 = 1.419
Таким образом, F 20 = T 20 + S 4 = 717.26 + 1.419 = 718.68

Пример . На основе поквартальных данных построена мультипликативная модель временного ряда . Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 - I квартал, 1,2 - II квартал и 1,3 - III квартал. Определите значение сезонной компоненты за IV квартал.
Решение. Поскольку сезонные воздействия за период (4 квартала) взаимопогашаются, то имеем равенство: s 1 + s 2 + s 3 + s 4 = 4. Для наших данных: s 4 = 4 - 0.8 - 1.2 - 1.3 = 0.7.
Ответ: Сезонная компонента за IV квартал равна 0.7.

Страница
6

Примером мультипликативной модели является двухфакторная модель объема реализации

где Ч - среднесписочная численность работников;

CB - средняя выработка на одного работника.

Кратные модели:

Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:

,

где ЗТ - средний запас товаров; ОР - однодневный объем реализации.

Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:

Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.

Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.

Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.

Если исходная факторная модель

то модель примет вид

.

Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:

.

Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.

.

Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: · место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; · модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило качественных, на составляющие; · при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.

Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.

Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;

a1 , b1, c1 - фактические значения факторов;

ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.

Общее изменение Dу=у1–у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:

Рассмотрим пример:

Таблица 2

Исходные данные для факторного анализа

Показатели

Условные обозначения

Базисные значения

Фактические значения

Изменение

Абсолютное (+,-)

Относительное (%)

Объем товарной продукции, тыс. руб.

Количество работников, чел

Выработка на одного работающего, тыс.руб.

Анализ влияния на объем товарной продукции количества работников и их выработки проведем описанным выше способом на основе данных табл.2. Зависимость объема товарной продукции от данных факторов можно описать с помощью мультипликативной модели:

Тогда влияние изменения величины количества работников на обобщающий показатель можно рассчитать по формуле:

Таким образом, на изменение объема товарной продукции положительное влияние оказало изменение на 5 человек численности работников, что вызвало увеличение объема продукции на 730 тыс. руб. и отрицательное влияние оказало снижение выработки на 10 тыс. руб., что вызвало снижение объема на 250 тыс. руб. Суммарное влияние двух факторов привело к увеличению объема продукции на 480 тыс. руб.

Преимущества данного способа: универсальность применения, простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: · при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; · если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.


1. Факторная модель: Р = Z ´ N.

Тип модели: двухфакторная мультипликативная.

2. Способы факторного детерминированного анализа, применяемые для решения задач подобного типа:

Цепной подстановки;

Абсолютных разниц;

Простого прибавления неразложимого остатка;

Взвешенных конечных разниц;

Логарифмический;

Интегральный.

3. Аналитическая таблица для решения:

4. Расчет влияния факторов.

4.1. Применение способа цепной подстановки:

а) Р 1 = N 0 ´ Z 0 = 195 ´ 0,12 = 23,4 (т);

б) Р 2 = N 1 ´ Z 0 = 205 ´ 0,12 = 24,6 (т);

в) Р(N) = Р 2 – Р 1 = 24,6 – 23,4 = + 1,2 (т);

г) Р 3 = 205 ´ 0,11 = 22,55 (т);

д) Р(Z) = Р 3 – Р 2 = 22.55 – 24,6 = -2,05 (т);

е) Р = Р (N) + Р (Z) = 1,2 –2,05 = -0,85 (т).

4.2. Применение способа абсолютных разниц:

а) Р(N) = N ´ Z 0 = +10 ´ 0,12 = 1,2 (т);

б) Р( Z) = Z ´ N 1 = -0,01 ´ 205 = -2,05 (т);

в) Р = Р (N) + Р (Z) = 1,2 –2,05 = --0,85 (т).

4.3. Применение способа относительных разниц:

а) Р(Z) = (т);

б) Р(N) = (т);

в) Р (Z) + Р (N) = -1,94+1,09= --0,85 (т).

Совокупное влияние факторов рассчитанных способом цепной подстановки и абсолютных разниц:

4.4. Применение способа простого прибавления неразложимого остатка:

а) неразложимый остаток: N ´ Z = -0,01 ´ 10 = -0,1 (т);

б) Р 1 (N) = N ´ Z 0 + = 1,2 + (--0,1) = 1,15(т);

в) Р(Z) = Z ´ N 1 - = -2,05 - (-0,1) = -2 (т);

г) Р = Р (N) + Р (Z) =-0,85 (т).

4.5. Применение способа взвешенных конечных разностей:

а) Р(N) 1 = N ´ Z 0 = 1,2;

Р(N) 2 = N ´ Z 1 =+10 ´ 0,11 = 1,1 (т);

б) Р(Z) 1 = Z ´ N 0 = --0,01 ´ 195 = -1,95 (т);

Р(Z) 2 = Z ´ N 1 = - 0,01´ 205 =-2,05 (т);

Применение логарифмического способа

в) К N + К Z = -1,35+2,35 =1 ;

(-1,35)= +1,15;

(2,35)= -2;

Общее влияние +1,15 – 2 = - 0, 85.

Применение интегрального способа

а) (т)

б) (т)

Совокупное влияние факторов, рассчитанное способом взвешенных конечных разниц, простого прибавления неразложимого остатка, логарифмического и интегрального.

Применение указанных способов дает возможность получить уточненный результат расчетов.

5) Вывод: норма расхода сырья снизилась на 0,85 т при увеличении выпуска продукции, что потребовало дополнительного использования сырья в размере 1,15 т.

Снижение нормы расходы сырья способствовало экономии сырьевых ресурсов в размере 2,0 т. Влияние снижения нормы расходы превышает влияние увеличения производственной программы в 1,71 раза – удельный вес влияния нормы расхода превышает удельный вес влияния производственной программы в 1,73 раза ().

Более сильное влияние снижения нормы расхода по сравнению с увеличением используемого сырья в результате увеличения выпуска продукции явилось фактором экономии сырья в размере 0,85 т.

Примечание : Специфика данной ситуации в том, что знак «минус» влияния фактора – норма расхода не означает его отрицательного влияния на результирующий показатель, т.к. снижение расхода материальных ресурсов при увеличении производственной программы является показателем интенсивного развития производства.

ЗАДАЧИ

для самостоятельного решения

18. На основе приведенных данных:

Составить факторную модель зависимости расхода сырья от нормы расхода и производственной программы;

Сделать вывод.

19. Способом цепной подстановки и методом абсолютных разниц провести анализ расходов на инкассацию выручки.

21. Проанализировать всеми возможными способами влияния на товарооборот выработки и численности работников.

22. Проанализировать всеми возможными способами влияние на товарооборот площади торгового зала и нагрузки на 1 кв.м площади.

Периоды Товарооборот, тыс. руб., (N)
2,1
2,15

23 . Составить факторную модель зависимости товарооборота от среднего остатка оборотных средств и их оборачиваемости.

Показатели Предприятие № 1 Предприятие № 2 Предприятие № 3
Базисный период Отчетный период Базисный период Отчетный период Базисный период Отчетный период
Товарооборот, тыс. руб., (N)
Средний остаток оборотных средств, тыс. руб., (С об) 156,4 162,5 228,4 226.5 44,5 48,6
Оборачиваемость (обор.), К об 8,6 8,4 12,1 12,8 4,9 5,2

24. Составить факторную модель зависимости выпуска продукции от фондоотдачи и средней стоимости основных средств.

Показатели Предприятие № 1 Предприятие № 2 Предприятие № 3
Базисный период Отчетный период Базисный период Отчетный период Базисный период Отчетный период
Выпуск продукции, тыс. руб., (N)
Средняя стоимость основных средств, тыс. руб.,( ост) 538,0 564,2 565,6 265,8 268,4
Фондоотдача, 1,806 1,862 1,206 1,200 14,5 14,8

25. . Составить факторную модель зависимости рентабельности капитала от рентабельности продаж и коэффициента оборачиваемости капитала.

Определить влияние рентабельности продаж и коэффициента оборачиваемости капитала на рентабельность капитала всеми возможными способами.

26 . Составить и решить всеми возможными способами факторную модель зависимости фонда заработной платы от численности персонала и средней заработной платы одного работника.

27 . Определить влияние изменений в составе основных фондов и фондоотдачи активной части основных фондов на фондооотдачу основных фондов, используя следующую модель:

где - фондоотдача активной части основных фондов;

Доля активной части основных фондов в стоимости основных фондов.

РЕЗУЛЬТАТЫ РЕШЕНИЯ ЗАДАЧ

Назначение сервиса . С помощью онлайн-калькулятора определяется мультипликативная индексная двухфакторная модель.

Инструкция . Для решения подобных задач выберите количество строк. Полученное решение сохраняется в файле MS Word .

Количество данных (количество строк) 1 2 3 4 5 6 7 8 9 10

Индекс – это относительный показатель сравнения двух состояний простого или сложного явления, состоящего из соизмеримых или несоизмеримых элементов, во времени или пространстве.
Основными задачами индексного метода являются :

  • оценка динамики обобщающих показателей, характеризующих сложные, непосредственно несоизмеримые совокупности;
  • анализ влияния отдельных факторов на изменение результативных обобщающих показателей;
  • анализ влияния структурных сдвигов на изменение средних показателей однородной совокупности;
  • оценка территориальных, в том числе международных, сравнений.
Индексы классифицируют по степени охвата , по базе сравнения , по виду весов , по форме построения и по составу явления . По степени охвата индексы бывают индивидуальные и общие (сводные). По базе сравнения – динамические, индексы выполнения плана, территориальные. По виду весов – с постоянными весами и с переменными весами. По форме построения – агрегатные и средневзвешенные. По составу явления – постоянного состава и переменного состава.

Общие (сводные) индексы бывают только групповые; динамические индексы бывают базисные и цепные; индексы с постоянными весами – стандартные, базисного периода, отчетного периода; средневзвешенные индексы – арифметические и гармонические.

Условные обозначения, используемые в теории индексного метода:
р - цена за единицу товара (услуги);
q - количество (объем) какого-либо продукта (товара) в натуральном выражении;
pq - общая стоимость продукции данного вида (товарооборот);
z - себестоимость единицы продукции (изделия);
zq - общая себестоимость продукции данного вида (денежные затраты на ее производство);
Т - общие затраты времени на производство продукции или общая численность работников;
w= q/ T - производство продукции данного вида в единицу времени (либо выработка продукции на одного работника, т.е. производительность труда);
t= T/ q - затраты рабочего времени на единицу продукции (трудоемкость единицы продукции);
1 - подстрочный символ показателя текущего (отчетного) периода;
0 - подстрочный символ показателя предшествующего (базисного) периода

Индивидуальный индекс ( i) характеризует динамику уровня изучаемого явления во времени за два сравниваемых периода или выражает соотношение отдельных элементов совокупности.
Основным элементом индексного соотношения является индексируемая величина. Индексируемая величина – это признак, изменение которого характеризует индекс.
Основные формулы вычисления индивидуальных индексов:
Индекс физического объема (количества) продукции

Индекс цен

Индекс стоимости продукции

Индекс себестоимости единицы продукции

Индекс затрат на производство продукции

Индекс трудоемкости

Индекс количества продукции, произведенной в единицу времени

Индекс производительности труда (по трудоемкости)

Взаимосвязь индексов



Виды мультипликативных индексных двухфакторных моделей

Двухфакторная мультипликативная модель как правило применяется для анализа показателей разнородной продукции предприятия.
  1. Мультипликативная индексная двухфакторная модель товарооборота: Q 1 = Q 0 i p i q
    С аналитической точки зрения i q показывает, во сколько раз увеличилась (или уменьшилась) общая сумма выручки под влиянием изменения объема продажи в натуральных единицах.
    Аналогично i p показывает, во сколько раз изменилась общая сумма выручки под влиянием изменения цены товара. Очевидно, что
    i Q = i q i p , или Q 1 = Q 0 i q i p
    Формула Q 1 = Q 0 i q i p представляет двухфакторную индексную мультипликативную модель итогового показателя. Посредством такой модели находят прирост итога под влиянием каждого фактора в отдельности.
    Так, если выручка от продажи некоторого товара возросла с 8 млн. руб. в предыдущем периоде до 12,180 млн. руб. в последующем и известно, что это объясняется увеличением количества проданного товара на 5 % при цене на 45 % большей, чем в предыдущем периоде, то можно записать следующее соотношение:
    12,180 = 8 × 1,05 × 1,45 (млн. руб.).
    Распределения общего прироста по факторам в двухфакторной индексной мультипликативной модели
    Общий прирост выручки в сумме 12,180-8 = 4,180 млн. руб. объясняется изменением объема продажи и цены. Прирост выручки за счет изменения объема продажи (в натуральном выражении) составит
    ΔQ(q) = Q 0 (i q -1)
    Для нашего примера: ΔQ(q) = 8(1,05-1)=+0,4 млн. руб.
    Тогда за счет изменения цены данного товара сумма выручки изменилась на
    ΔQ(p) = Q 0 i q (i p -1) или ΔQ(p) = 8*1,05(1,45-1) = +3,78 млн.руб.
    Общий прирост товарооборота складывается из приростов, объясняемых каждым фактором в отдельности, т.е. ΔQ = Q 1 – Q 0 = ΔQ(q) + ΔQ(p)
    или ΔQ = 12,18-8=0,4+3,78 = 4,18 млн.руб.
  2. Мультипликативная индексная двухфакторная модель себестоимости (затрат, издержек обращения): Q 1 = Q 0 i z i q

к.э.н., директор по науке и развитию ЗАО "КИС"

Анализ мультипликативной модели (Часть1)

В предыдущей статье мы рассмотрели один из методов прогнозирования, используемый для временных рядов - анализ аддитивной модели. Нашей задачей было представить пример расчета трендовых значений объема продаж и дать прогноз на будущие периоды на основе изложенных формул, не углубляясь в обоснование коэффициентов. Тем более, широкие возможности программного продукта Microsoft Excel позволяют расчет тренда сделать быстро, используя встроенные статистические функции.

Очевидно, чтобы выполнить прогноз, применяя стандартные технологии, нужна информация. И вот эта проблема является достаточно серьезной. Как правило, на современных предприятиях статистические ряды не накоплены. Информационная база начинается где-то в 90-х годах, а многое в тот период было неопределенным. Государственные статистические данные стали не актуальными, и достоверность данных далеко не безоговорочна.

Но функции планирования и прогнозирования являются основными видами деятельности любой организации, а стабилизационные процессы, протекающие в нашей стране за последний период, все же позволяют надеяться, что определенный тренд развития существует, и в будущем не будет нарушен. Определенные выводы можно будет делать и без полных статистических данных на маленькой выборке. Главное, правильно сформулировать условия решения задачи и выбрать метод, который был бы адекватен статистической природе изучаемых временных рядов.

Так, например, прежде чем определять метод, которым следует строить прогноз, аналитик должен решить для себя: обладает ли ряд, который он изучает, свойством сезонности.

Сезонность является объективным свойством временных рядов. Сезонная вариация - это повторение данных через небольшой промежуток времени, т.е. если форма кривой, которая описывает продажи товара, повторяет свои характерные очертания и тенденции, то о таком ряде можно говорить, что он обладает сезонностью. В этом случае, период прогнозирования должен быть достаточно большой, чтобы можно было наблюдать сезонные всплески и колебания продаж.

В некоторых временных рядах значение сезонной вариации - это определенная доля трендового значения, т.е. сезонная вариация увеличивается с возрастанием значений тренда. В таких случаях используется мультипликативная модель.

Для мультипликативной модели фактическое значение рассчитывается по формуле:

Расчет фактического значения в мультипликативной модели

Т - трендовое значение

S - сезонная вариация

Е - ошибка прогноза

Анализ мультипликативной модели рассмотрим на примере. В таблице указан объем продаж за последние одиннадцать кварталов. На основании этих данных дадим прогноз объема продаж на следующие два квартала.

Опираясь на предложенный алгоритм, на первом этапе исключим влияние сезонной вариации. Воспользуемся методом скользящей средней, заполним следующие столбцы таблицы.


Метод скользящей средней

Простое скользящее среднее (Simple Moving Avarage) - это средний арифметический показатель (объем продаж, объем производства, цена) за определенный период времени.

Одним важным достоинством скользящих средних является их способность давать сигналы о развороте тренда, подтверждать рост, спад.

Общая формула для вычисления SMA за n-ый период такая:


Простое скользящее среднее за период N

где n - период усреднения,

Р(i) - усредняемый объем (i - 1) период тому назад (i-е измерение или отсчет),

P(1) - объем продаж за последний период,

P(n) - самый старый по оси времени объем рассматриваемого нами временного промежутка.

1 год = 4 квартала. Поэтому найдем среднее значение объема продаж за 4 последовательных квартала. Для этого нужно сложить 4 последовательных числа из второго столбца, разделить на 4 (количество слагаемых) и результат запишем в третий столбец напротив третьего слагаемого: (63 74 79 120)/4=84 ; (74 79 120 67)/4=85; и т.д.

Если скользящая средняя вычисляется для нечетного числа сезонов, то результат не центрируется, в нашем примере число сезонов - восемь, поэтому сумму двух чисел из третьего столбца, разделим на 2 и запишем в четвертый столбец напротив верхнего из них: (84 85)/2=2=84,5.

Оценка сезонной вариации для аддитивной модели рассчитывается как разность объема продаж и центрированной скользящее средней. Для мультипликативных моделей - это отношение. Числа второго столбца делим на числа четвертого и результат округляем до трех цифр и запишем в пятый столбец: 79/84,5=0,935.

Следующим этапом необходимо исключить сезонную вариацию из фактических данных - провести десезонализация данных. Но это уже в следующем выпуске.


© 2024
reaestate.ru - Недвижимость - юридический справочник