14.09.2019

Лазерный луч в роли сверла. Основные этапы техпроцесса. Назначение и принцип действия


Laser technologies are capable of playing an evermore important role in industrial processing of materials. They successfully carry out cutting, welding, drilling, thermal surface machining, scribing and other operations. The advantages of this include higher productivity, perfect quality, uniqueness of operations performed in out-of-reach places or very small surfaces. Automatic systems for positioning and focusing the laser complexes make their application even more efficient and ease of operation creates preconditions for their wide implementation into production processes

С.Н. Колпаков, А.А. Приёмко,
ООО «Альт лазер», г. Харьков

В настоящее время лазер успешно выполняет целый ряд технологических операций, прежде всего, таких, как резка, сварка, сверление отверстии, термическая обработка поверхности, скрайбирование, маркировка, гравировка и т. п., а в ряде случаев обеспечивает преимущества по сравнению с другими видами обработки. Так, сверление отверстий в материале может быть выполнено быстрее, а скрайбирование разнородных материалов является более совершенным. Кроме того, некоторые виды операции, которые раньше были невозможны из-за повышенной трудоемкости, выполняются с большим успехом. Например, сварка материалов и сверление отверстий могут осуществляться через стекло в вакууме или атмосфере различных газов

Промышленная обработка материалов стала одной из областей наиболее широкого использования лазеров. До появления лазеров основными тепловыми источниками для технологической обработки являлись газовая горелка, электродуговой разряд, плазменная дуга и электронный поток. С появлением лазеров, излучающих большую энергию, оказалось возможным создавать на обрабатываемой поверхности высокие плотности светового потока. Роль лазеров как световых источников, работающих в непрерывном, импульсном режимах или в режиме гигантских импульсов, состоит в обеспечении на поверхности обрабатываемого материала плотности мощности, достаточной для его нагревания, плавления или испарения, которые лежат в основе лазерной технологии.

В настоящее время лазер успешно выполняет целый ряд технологических операций, прежде всего, таких, как резка, сварка, сверление отверстий, термическая обработка поверхности, скрайбирование, маркировка, гравировка и т. п., а в ряде случаев обеспечивает преимущества по сравнению с другими видами обработки. Так, сверление отверстий в материале может быть выполнено быстрее, а скрайбирование разнородных материалов является более совершенным. Кроме того, некоторые виды операций, которые раньше выполнить было невозможно из-за трудной доступности, выполняются с большим успехом. Например, сварка материалов и сверление отверстий могут выполняться через стекло в вакууме или атмосфере различных газов.

Слово «лазер» составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Классически так сложилось, что при описании лазерных технологий обработки материалов основное внимание уделяется только непосредственно лазерам, принципам их работы и техническим параметрам. Однако для того, чтобы реализовать любой процесс лазерной размерной обработки материалов, кроме лазера, необходимы ещё система фокусировки луча, устройство управления движением луча по поверхности обрабатываемого изделия или устройство перемещения изделия относительно луча, система поддува газов, оптические системы наведения и позиционирования, программное обеспечение управления процессами лазерной резки, гравировки и т. д. В большинстве случаев выбор параметров устройств и систем, обслуживающих непосредственно лазер, является не менее важным, чем параметры самого лазера. Например, для маркировки подшипников диаметром менее 10 мм или прецизионной точечной лазерной сварки время, затрачиваемое на позиционирование изделия и фокусировку, превышает время гравировки или сварки на один-два порядка (время нанесения маркировочной надписи на подшипник приблизительно 0,5 с). Поэтому без использования автоматических систем позиционирования и фокусировки использование лазерных комплексов во многих случаях становятся экономически нецелесообразными. Аналогия лазерных систем с автомобилями показывает, что лазер выполняет функции двигателя. Каким бы хорошим двигатель ни был, но без колёс и всего остального автомобиль не поедет.

Ещё одним немаловажным фактором в выборе лазерных технологических систем является простота их обслуживания. Как показала практика, операторы имеют невысокую квалификацию обслуживания подобного оборудования. Одной из причин этого является то, что лазерные комплексы устанавливают в большинстве случаев на замену устаревшим технологическим процессам (ударная и химическая маркировки изделий, механическая гравировка, ручная сварка, ручная разметка и т. п.). Руководители предприятий, которые проводят модернизацию своего производства, как правило, из этических соображений, заменяя старое оборудование новым, оставляют старый (в прямом и переносном смыслах) обслуживающий персонал. Поэтому для внедрения лазерных технологических систем в производство при данных начальных условиях его развития (в постсоветских республиках) необходимо предусматривать максимально возможный уровень автоматизации и простоты обучения. Не следует отбрасывать и тот факт, что зарплата неквалифицированного персонала ниже, чем подготовленного специалиста. Поэтому экономически выгодней покупать сложное оборудование с возможностью простоты в его обслуживании, чем приглашать высококвалифицированный персонал.

Таким образом, задачу использования лазерных технологий в современном производстве следует рассматривать не только с точки зрения технических параметров непосредственно лазера, но и с учётом характеристик оборудования, программного обеспечения, которые позволяют использовать специфические свойства лазера для решения отдельно взятой технологической задачи.

Любая лазерная система, предназначенная для размерной обработки материалов, характеризуется следующими параметрами:

  • скоростью обработки (реза, гравировки и т. п.);
  • разрешающей способностью;
  • точностью обработки;
  • размером рабочего поля;
  • диапазоном материалов обработки (чёрные металлы, цветные металлы, дерево, пластмасса и т. д.);
  • диапазоном размеров и массы изделий, предназначенных для обработки;
  • конфигурацией изделий (например, гравировка на плоской, цилиндрической, волнообразной поверхностях);
  • необходимым временем изменения выполняемых задач (смена рисунка гравировки, конфигурации линии реза, изменение материала обработки и т. п.);
  • временем установки и позиционирования изделия;
  • параметрами условий окружающей среды (диапазон температур, влажность, запылённость), в которых может эксплуатироваться система;
  • требованиями к квалификации обслуживающего персонала.

Исходя из этих параметров, выбирается тип лазера, устройство развертки луча, разрабатывается конструкция крепежа изделия, уровень автоматизации системы в целом, решается вопрос о необходимости написания специализированных программ для подготовки файлов рисунков, линий реза и т. д.

Основными техническими характеристиками, определяющими характер обработки, являются энергетические параметры лазера — энергия, мощность, плотность энергии, длительность импульса, пространственная и временная структуры излучения, пространственное распределение плотности мощности излучения в пятне фокусировки, условия фокусировки, физические свойства материала (отражательная способность, теплофизические свойства, температура плавления и т. д.).

Лазерное сверление отверстий в металлах

Использование лазера в качестве сверлящего инструмента дает преимущества.

Отсутствует механический контакт между сверлящим инструментом и материалом, а также поломка и износ сверл.

Увеличивается точность размещения отверстия, так как оптика, используемая для фокусировки лазерного луча, используется также и для наводки его в необходимую точку. Отверстия могут быть ориентированы в любом направлении.

Достигается большее отношение глубины к диаметру сверления, чем это имеет место при других способах сверления.

При сверлении, так же как и при резании, свойства обрабатываемого материала существенно влияют на параметры лазера, необходимые для выполнения операции. Сверление осуществляют импульсными лазерами, работающими как в режиме свободной генерации с длительностью импульсов порядка 1 мкс, так и в режиме с модулированной добротностью с длительностью в несколько десятков наносекунд. В обоих случаях происходит тепловое воздействие на материал, его плавление и испарение. В глубину отверстие растет в основном за счёт испарения, а по диаметру — за счет плавления стенок и вытекания жидкости при создаваемом избыточном давлении паров.

Как правило, глубокие отверстия желаемого диаметра получаются при использовании повторяющихся лазерных импульсов малой энергии. В этом случае образуются отверстия с меньшей конусностью и лучшего качества, нежели отверстия, полученные с более высокой энергией одиночного импульса. Исключение составляют материалы, содержащие элементы, способные создавать высокое давление паров. Так, латунь сваривать очень трудно лазерным импульсным излучением из-за высокого содержания цинка, однако при сверлении латунь имеет некоторые преимущества, так как атомы цинка значительно улучшают механизм испарения.

Поскольку многоимпульсный режим позволяет получать отверстия лучшего качества нужной геометрии и с небольшим отклонением от заданных размеров, то на практике этот режим получил распространение при сверлении отверстий тонких металлов и неметаллических материалов. Однако при сверлении отверстий в толстых материалах предпочтительными являются одиночные импульсы большой энергии. Диафрагмирование лазерного потока позволяет получить фигурные отверстия, однако этот способ чаще используется при обработке тонких пленок и неметаллических материалов. В том случае, когда лазерное сверление производится в тонких листах толщиной меньше 0,5 мм, имеет место некоторая унификация процесса, состоящая в том, что отверстия диаметром от 0,001 до 0,2 мм могут быть изготовлены во всех металлах при относительно низких мощностях.

Высверливание отверстий в металлах может быть использовано в ряде случаев. Так, с помощью импульсных лазеров может быть произведена динамическая балансировка деталей, вращающихся с высокой скоростью. Дисбаланс выбирается путем локального выплавления определенного объема материала. Лазер может быть использован также для подгонки электронных элементов либо локальным испарением материала, либо за счет общего разогрева. Высокая плотность мощности, малый размер пятна и малая длительность импульса делают лазер идеальным инструментом для этих целей.

Лазеры, применяемые для сверления отверстий в металле, должны обеспечить в фокусированном луче плотность мощности порядка 10 7 -10 8 Вт/см 2 . Сверление отверстий металлическими сверлами диаметром меньше 0,25 мм является трудной практической задачей, в то время как лазерное сверление позволяет получать отверстия диаметром, соизмеримым с длиной волны излучения, с достаточно высокой точностью размещения. Специалистами фирмы «Дженерал Электрик» (США) подсчитано, что лазерное сверление отверстий по сравнению с электроннолучевой обработкой имеет высокую экономическую конкурентоспособность (табл. 1). В настоящее время для сверления отверстий используются в основном твердотельные лазеры. Они обеспечивают частоту следования импульсов до 1000 Гц и мощность в непрерывном режиме от 1 до 10 3 Вт, в импульсном — до сотен киловатт, а в режиме с модуляцией добротности — до нескольких мегаватт. Некоторые результаты обработки такими лазерами приведены в табл. 2.

Лазерная сварка металлов

Лазерная сварка в своем развитии имела два этапа. Первоначально получила развитие точечная сварка. Это объяснялось наличием в то время мощных импульсных твердотельных лазеров. В настоящее время, при наличии мощных газовых СО 2 и твердотельных Nd:YAG-лазеров, обеспечивающих непрерывное и импульсно-непрерывное излучение, возможна шовная сварка с глубиной проплавления до нескольких миллиметров. Лазерная сварка имеет ряд преимуществ по сравнению с другими видами сварки. При наличии высокой плотности светового потока и оптической системы возможно локальное проплавление в заданной точке с большой точностью. Это обстоятельство позволяет производить сваривание материалов в труднодоступных участках, в вакуумной или газонаполненной камере при наличии в ней окон, прозрачных для лазерного излучения. Сваривание, например, элементов микроэлектроники в камере с атмосферой инертного газа представляет особый практический интерес, поскольку в этом случае отсутствуют реакции окисления.

Сваривание деталей происходит при значительно меньших плотностях мощности, чем резка. Это объясняется тем, что при сварке необходимы только разогрев и плавление материала, т. е. необходимы плотности мощности, еще недостаточные для интенсивного испарения (10 5 -10 6 Вт/см 2), при длительности импульса около 10 -3 -10 -4 с. Поскольку излучение лазера, сфокусированное на обрабатываемом материале, является поверхностным тепловым источником, то передача тепла в глубину свариваемых деталей осуществляется за счет теплопроводности, и зона проплавления с течением времени при правильно подобранном режиме сварки изменяется. В случае недостаточных плотностей мощности имеет место непроплавление свариваемой зоны, а при наличии больших плотностей мощности наблюдаются испарение металла и образование лунок.

Сварку можно производить на установке для газолазерной резки при меньших мощностях и использовании слабого поддува инертного газа в зону сварки. При мощности СО 2 -лазера около 200 Вт удается сваривать сталь толщиной до 0,8 мм со скоростью 0,12 м/мин; качество шва получается не хуже, чем при электроннолучевой обработке. Электроннолучевая сварка имеет несколько большие скорости сваривания, но зато проводится в вакуумной камере, что создает большие неудобства и требует значительных общих временных затрат.

В табл. 3 приведены данные по стыковой сварке СО 2 -лазером, мощностью 250 Вт различных материалов.

При других мощностях излучения СО 2 -лазера получены данные шовной сварки, приведенные в табл. 4. При сварке внахлест, торцовой и угловой были получены скорости, близкие к указанным в таблице, при полном проплавлении свариваемого материала в зоне воздействия луча.

Лазерные сварочные системы способны сваривать разнородные металлы, производить минимальное тепловое воздействие за счет малого размера лазерного пятна, а также сваривать тонкие проволочки диаметром менее 20 мкм по схеме провод-провод или провод-лист.

Литература

1. Крылов К.И., Прокопенко В.Т., Митрофанов А.С. Применение лазеров в машиностроении и приборостроении. — Л.: Машиностроение. Ленингр. отд-ние, 1978. — 336 с.

2. Рыкалин Н.Н. Лазерная обработка материалов. — М., Машиностроение, 1975. — 296 с.

Вид механической обработки черных металлов путем резания отверстий вращающимися механизмами называют сверлением.

Различают простое и глубокое сверление.

Во втором случае глубина отверстия должна быть более 10 см., или размером вглубь более 5 исходных диаметров (5*d). При помощи сверл получают отверстия различной глубины и диаметра или многогранного сечения.

Обработка заготовки с целью ее сверления может производиться несколькими способами:

  1. Заготовка вращается, при этом одновременно производится продольная подача не вращающегося сверлильного инструмента;
  2. Заготовка не вращается, зафиксирована;
  3. Одновременное вращение заготовки и инструмента.

Все эти способы широко применяются на практике. Наибольший спрос на процесс глубокого сверления есть в следующих сферах: металлургия, производство труб, нефтегазовая и аэрокосмическая промышленность, выпуск плит теплообменников и бойлеров и многие другие. Наиболее часто применяют следующие детали с глубокими отверстиями: роторы, валы, оси, втулки, гильзы, цилиндры, бандажи, металлические скорлупы и многое другое.

Выполним полный комплекс работ по механической обработке металла:

Разновидности глубокого сверления

  1. По схеме удаления высверливаемого материала (стружки) различают: сплошное и кольцевое глубокое сверление. В первом варианте высверливаемый материал удаляется в виде стружки, во втором - часть кольцевой плоскости удаляется в виде стержня, остальное - также в виде стружки;
  2. По способу резания различают следующие виды:
    • Одноштанговая система (система STS). Данный метод оптимально подходит для обработки деталей на высокопроизводительном или серийном производстве. Сложность процесса состоит в том, что требуется применять маслоприемник с многочисленными подающими шлангами, при этом заготовка вращается. Одноштанговая система считается самой эффективной для получения высококачественных отверстий;
    • Эжекторная система. Метод глубокого сверления со средними параметрами выпуска заготовок. Позволяет осуществлять сверление на многофункциональных станках (например, токарных или сверлильных), систему дополняют стационарной или мобильной насосной станцией. Эжекторный метод подходит для получения отверстий d=20-60 мм. и глубиной до 1200 мм., не исключая получение прерывистых отверстий;
    • Система сверления ружейными или трубчато-лопаточными сверлами с внутренней подачей смазочно-охлаждающего материала. Этот метод подходит для малых предприятий, где по условиям технологии требуется получить глубокие отверстия небольшого диаметра. Однорезцовые сверла легко встраиваются в универсальные станки. Резец изготавливается из твердых сплавов и по всей длине сверлильного стержня имеет V-образную канавку, угол кривизны которой может составлять от 110 до 1200 градусов. Рекомендуемый dотв.=35-40 мм., длиной до 50*d. При данном методе отпадает надобность проводить такие операции как зенкерование и развертывание.
  3. В зависимости от степени автоматизации управления процессом сверления различают глубокое сверление с автоматическим изменением одного или нескольких параметров режима (например, скорость вращения, подача смазочного материала).

Подача жидкости является обязательным этапом технологического процесса, так как:

  1. Обеспечивается эффективный отвод стружки из зоны резания по отводным каналам;
  2. Уменьшается сила трения между трущимися частями;
  3. Производится отвод тепла, которое образуется в процессе длительного сверления, обеспечивая тем самым сохранности сверла от прогорания;
  4. Осуществляется дополнительная обработка отверстия.

С увеличением глубины сверления возрастают трудности с обработкой отверстия.

Для глубокого сверления применяют специальный инструмент, оборудование и способы обработки.

Простые сверла и дрели для этого не подходят, так как не удастся достичь точности сверления по всему диаметру, заданной шероховатости поверхности, прямолинейность отверстия.

Важным параметром также является сохранение поверхности углубления с минимальным отклонением от округлости.

Применение традиционного инструмента делает процесс глубокого сверления низкопроизводительным, трудоемким, а в некоторых случаях (зависит от глубины отверстий) - невозможным.

На практике в машиностроительной сфере используют специализированное оборудование с технической оснасткой, с дополнительным применением специальных режущих и прочих вспомогательных инструментов.

Нередко требуются нестандартные приспособления для выполнения технологических приемов.

Особенности глубокого сверления

При глубоком сверлении очень важно соблюдать главные принципы технологии. Во-первых, производится подбор скорости вращения сверлильной части инструмента или оптимальная скорость резания (подачи свергла). Во-вторых, должно быть обеспечено нормальное дробление стружки, а также полный отвод отходов из канала. Важным моментом во время измельчения отходов сверления является сохранность режущей части инструмента, не должно быть повреждений сверла, образования на нем заусениц или иных дефектов. Далее, ключевым фактором качественной обработки поверхностей заготовок или деталей является эффективная и грамотная подача смазочно-охлаждающей жидкости.

Процесс сверления проходит с обязательной подачей смазочно-охлаждающей жидкости под давлением и с определенным расходом.

Для этого в системе работает насосное оборудование - маслонасосы или насосы для перекачки вязких жидкостей.

Производительность системы выбирается в соответствии с расходом жидкости и требуемым давлением подачи смазочного материала.

ВОЗМОЖНО ВАМ БУДЕТ ИНТЕРЕСНО

Специалисты разработали немало способов обработки бриллиантов для улучшения качеств этих камней. Самым проверенным способом повышения качества бриллиантов считается лазерное сверление.

Такой вид обработки алмазов впервые применили в коммерческой практике в 70-х годах прошлого века. Темные включения такие, как магнетиты, пирротины и углеродные включения не улучшают оптические характеристики камня и тем более не привлекают покупателей. В процессе лазерного сверления эти включения выжигают , растворяют с помощью азотной или серной кислот или же осветляют.

Лазерный луч специального аппарата, квантового генератора ИК-диапазона с длиной волн около 1060 нм, высверливает микроотверстие диаметром не более 20-60 мкм. 20 мкм равно 0,02 мм, такова толщина человеческого волоса. Сверление алмаза проводится на глубину не более 1,6 мм. Этот процесс занимает в среднем от 30 минут и более.

Существует способ осветления темных включений. Через отверстие, высверленное лазерным лучом, поступает воздух, под воздействием которого окраска включения может стать значительно светлее. Еще один способ осветления заключается в том, что в канал лазерного отверстия в вакуумной среде вводят реактив, который осветляет или полностью растворяет включение. Конечный результат зависит от химического состава данного включения.

При десятикратном увеличении под микроскопом или под лупой рассмотреть каналы лазерных отверстий нетрудно, даже если их запломбировали. Они имеют вид воронкообразных выемок на поверхности и прямых линий беловатого цвета внутри. Для заполнения каналов с недавнего времени используются такие вещества, как синтетическая смола или воск из-за высокого коэффициента преломления. После заполнения канала соответствующим веществом канал пломбируют. Хотя запломбированные отверстия менее заметны на поверхности и в меньшей степени подвержены загрязнению, в отраженном свете можно увидеть «кратер» в месте сверления. Выемки круглой формы на поверхности можно нащупать и острием иглы. Следует учитывать, что если в процессе сверления отверстия лазерный луч попал в зону сильного внутреннего напряжения, то вокруг канала образуются легко различимые трещинки напряжения и спайности.

При оценке подобных камней возникают трудности. Конечно, визуальные геммологические характеристики заметно улучшаются, но сверление создает искусственные дефекты в виде мелких трещинок.

Бриллианты относят к определенной группе чистоты с учетом их внешнего вида и наличия просверленных отверстий. Следует отметить, что целью лазерного сверления является не повышение степени чистоты бриллианта, а осветление темных включений. Это приводит к улучшению внешнего вида камня и больше привлекает покупателей.

В соответствующих сертификатах качества, накладных и других документах в обязательном порядке должна содержаться информация о результатах вмешательства со стороны человека и наличии отверстий лазерного сверления.

Недавно был разработан новый метод лазерной обработки алмазов, при котором канал не выводится на поверхность. Этот вид обработки подходит для алмазов с темными включениями, расположенными недалеко от поверхности. Но применение этого метода все же не гарантирует отсутствия новых трещин спайности и напряжения, «перьев» и микротрещин вокруг включений. Дефекты подобного рода, существовавшие до обработки, после применения данного метода могут усилиться. С другой стороны, новые трещинки, достигая поверхности, могут сыграть роль каналов. При введении кислот в эти каналы включения осветляются. Данный метод подходит не для всех камней, но бриллианты с темными включениями , находящимися около поверхности, с мелкими трещинками - идеальный материал для этого способа облагораживания.

Суть данного метода лазерной обработки заключается в том, что лазеры в пульсирующем режиме фокусируют точно на место включения. В результате процесса выделяется значительное количество тепла, которое способствует распространению трещинок до поверхности камня. Таким образом, отпадает необходимость сверлить канал с образованием воронки на поверхности. Растворитель, легко проникающий по новым трещинкам к включению, либо осветляет его, либо растворяет. Но и этот способ может привести к образованию ямок и каверн на поверхности камня с тем отличием, что их форма будет не такой идеально круглой, а размеры будут незначительно меньше.

Еще один метод лазерной обработки разработали израильские специалисты в начале 2000-х годов. Его назвали КМ(сокращение от слов«КидуахМеухад» ), что в переводе с иврита означает «специальное сверление». Способ, ставший популярным в Антверпене, применяется для осветления темных включений с микротрещинами с помощью кислоты при соблюдении особых условий. На ближайший к поверхности дефект направляют лазерный луч, в результате чего дефект распространяется до поверхности.

После лазерноговоздействия алмаз опускают в концентрированную кислоту и нагревают до высокой температуры под давлением. Благодаря созданным условиям, кислота проникает внутрь до включения и растворяет его.

Алмазы после обработки методом КМ можно идентифицировать по наличию голубовато-коричневатых оттенков в отраженном свете в местах искусственно созданных трещин , особенно при перекатывании камня. Чего нельзя сказать об алмазах, которые обрабатываются по традиционной технологии лазерного сверления с образованием заметных отверстий на поверхности. Более того, в алмазах, обработанных методом КМ, иногда можно заметить незначительные остатки веществачерноватого цвета в виде неправильных линий на поверхности трещин напряжения, которые образовались в процессе лазерного воздействия.

Технические характеристики:

Максимальный размер заготовки, мм

600 х 650 (другие по согласованию)

Длина волны UV-лазера, нм

Частота импульсов, кГц

Мощность UV-лазера(Вт) при 60 кГц, не менее

Точность позиционирования по осям Х, Y, мкм

Мин. диаметр отверстия, мкм

от 50 (зависит от настроек станка)

Макс. отношение диаметр/глубина отверстия

Поле обработки (без движения осей станка), мм

Макс.: 40х40

Макс. компенсация изменения высоты поверхности заготовки, мм

Габариты и вес:

Размеры установки (Ш-Г-В)

1320 х 1286 х 2286 мм

Вес установки

Станок предназначен для применения в производстве высокоточных печатных плат (ПП), гибко-жёстких ПП, гибких ПП и гибких кабелей, ПП со встроенными компонентами.

Основной отличительной особенностью станка является использование в качестве излучателя УФ лазера с длинной волны 355 нм. Применение УФ лазера с длиной импульса ~ 35 нс позволяет производить обработку различных видов материалов, обеспечивая при этом высочайшее качество обработки (минимизация нагара, гибкое управление процессом, остановка точно на заданном слое меди при выполнении глухих отверстий). Кроме того, в отличие от технологии использующей ИК лазер, применение станка LaserFlex позволяет избавиться от подготовительных операций, необходимых для обработки меди на ИК лазере (например, оксидирование) и постобработки (удаление нагара).

Таким образом, универсальный станок LaserFlex является оптимальным средством для решения таких задач, как:

  • Удаление полимерных покрывных пленок
  • Сверление и резка фольгированных медью полимерных ламинатов
  • Обработка гибких и гибко-жестких ПП
  • Сверление и резка внутренних слоев и препрегов, например, FR4
  • Отделение или «высвобождение» проводников и структурирование полостей
  • Сверление микроотверстий в т.ч. глухих

Скорость, точность и качество обработки обеспечивают следующие узлы:

  • Стабильное гранитное основание, предназначенное для компенсации механических моментов при движении осей и для температурной стабилизации параметров движения
  • Высокодинамичные линейные двигатели (оси X, Y)
  • Встроенный индикатор мощности излучения лазера, позволяющий быстро и точно корректировать параметры источника излучения, опираясь на фактическое значение выходной мощности лазера. Позволяет максимально точно подобрать режим обработки и поддерживать его в любых условиях: при нормальной эксплуатации, в случае загрязнения оптической системы, между регламентными работами и даже в случае потери мощности источником излучения вследствие износа в ходе длительной эксплуатации.

Удобство в использовании и безопасность:

Управляемый при помощи сенсорного дисплея с дружелюбным интерфейсом специализированного программного обеспечения станок LaserFlex будет совмещать в себе простоту и удобство в использовании с

поистине впечатляющей производительностью. Простая и интуитивно-понятная управляющая оболочка избавляет от необходимости проводить длительное обучение операторов.

Станок оснащен всеми необходимыми средствами защиты, удовлетворяющими мировым стандартам. Это обеспечивает, при соблюдении техники безопасности, безопасную и безаварийную работу на станке.

Фиксация и базирование заготовки:

Для фиксации заготовки станок оснащен вакуумным столом, что позволяет избежать замятия, и волнистости при фиксации гибких и гибко-жестких заготовок.

Положения заготовки на столе определяется по меткам с использованием CCD-камеры.

Форматы данных:

В качестве входных используются данные в форматах: DXF, Gerber, Bitmap.

В качестве дополнительного оборудования могут быть приобретены:

  • Компрессор с системой фильтров для обеспечения сжатым воздухом требуемого качества
  • Источник бесперебойного питания

Станки серии Pico

Технические характеристики

Управляющий интрефейс

Длина волны лазера, нм

Мощность Лазера, Вт

Длительность импульса, пс

Система крепления заготовок

Вакуумный стол

Зона обработки, мм

Количество обрабатывающих станций

Повторяемость, мкм

Точность позиционирования, мкм

Габариты и вес:

Общий вес, кг

Габаритные размеры (ДШВ), мм

2100х1920х1720

Назначение и принцип действия

Лазерный обрабатывающий центр Picodrill – это высокопроизводительная и высокоточная установка для сверления, нарезки и структурирования различных материалов. Применение лазера пикосекундных импульсов высокой энергии делает возможным холодное прецизионное снятие материала. В качестве опции предлагается полностью автоматический режим обработки.

Возможные области применения при производстве ПП

  • Сверление микроотверстий в заготовках печатных плат, до 4000 в секунду
  • Микроструктурирование, прецизионная обработка деталей из стекла и керамики
  • Нарезка и сверление электронных компонентов, полупроводниковых подложек
  • Сверление микроотверстий

Качество обработки

Благодаря пикосекундному лазеру возможно холодное

удаление практически любого материала. Средняя мощность лазера 25 Вт и пиковая мощность импульса макс. до 70 МВт в импульсе, обеспечивают возможность удаления мельчайших объемов материала без каких-либо остаточных продуктов горения.

Автоматическое управление процессом

  • Установка оснащена сенсорами для компенсации толщины компонентов.
  • Автоматическая корректировка фокуса осуществляется за счет автоматической подстройки оси Z.
  • Устройства измерения энергии лазера обеспечивают обратную связь и автоматическую подстройку энергии лазера. Точность может быть значительно улучшена при
  • использовании системы сканирования по 3 осям.

Контроль при помощи CCD-камеры

Обе рабочие станции располагают CCD-камерами высокого разрешения с кольцевой светодиодной подсветкой. Это делает возможной автоматическую корректировку смещения, поворота, сжатия или растяжения заготовки.

Опции

  • Две или четыре сканирующие головки
  • Пикосекундный лазер различной мощности и длины волны (1064, 532, 355 нм)
  • Тенденции развития современной электроники ставят перед производством печатных плат (ПП) задачи нового уровня. Прогресс мобильных технологий и растущий спрос на такие как устройства смартфоны и ультрабуки на сегодняшний день требуют от ПП максимальной миниатюризации, увеличения плотности соединений и при этом высочайшего качества.

    Стремительное развитие лазерной техники и технологии открывает для производства печатных плат дверь в завтрашний день, не оставляя без внимания сегодняшний. Лазерное оборудование применяется не только там, где заканчиваются возможности механической обработки (сверление микроотверстий от 50 мкм, обработка материалов тяжело поддающихся механической обработке, и т.п.), но и для выполнения доступных механике операций, с большей точностью и производительностью (сверление микроотверстий со скоростью до 1000 отв./сек, сверх точное сверление и фрезерование на заданную глубину). При этом возможность регулировать режим обработки, как за счет мощности излучения, так и за счет его временных и частотных характеристик позволяет добиться высочайшего качества обработки.

    Сверление отверстий в ча­совых камнях - с этого начиналась трудовая деятель­ность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников сколь­жения. При изготовлении таких подшипников требует­ся высверлить в рубине - материале весьма твердом и в то же время хрупком - отверстия диаметром всего 0,1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с ис­пользованием сверл, изготовленных из тонкой рояль­ной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель­ных перемещений. Для сверления одного камня требо­валось до 10-15 мин. Как убрать пробки в ушах - серная пробка nmedik.org/sernaya-probka.html .

    Начиная с 1964 г. малопроизводительное механи­ческое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «ла­зерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие - он его пробивает, вызы­вая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в частности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазер­ной установки в автоматическом режиме -камень в секунду. Это в тысячу раз выше производительности механического сверления!

    Вскоре после своего появления на свет лазер полу­чил следующее задание, с которым справился столь же успешно, - сверление (пробивание) отверстий в алмаз­ных фильерах. Для полу­чения очень тонкой проволоки из меди, бронзы, вольф­рама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью, - ведь в процессе протяги­вания проволоки диаметр отверстия должен сохра­няться неизменным. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую про­волоку сквозь отверстие в алмазе - сквозь так называе­мые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно - для механического сверления одного отверстия в алмазной фильере требуется до десяти часов. Зато, как оказа­лось, совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов.

    Сегодня лазерное сверление широко применяется не только для особо твердых материалов, но и для материалов, отличающихся повышенной хрупкостью. Лазерное сверло оказалось не только мощным, но и весьма деликатным «инструментом». Пример: применение лазера при сверлении отверстий в подложках микросхем, изготавливаемых из глинозем­ной керамики. Керамика необычайно хрупка. По этой причине механическое сверление отверстий в подложке микросхемы производили, как правило, на «сыром» материале. Обжигали керамику уже после сверления. При этом происходила некоторая деформация изде­лия, искажалось взаимное расположение высверлен­ных отверстий. Проблема была решена с появлением лазерных сверл. Используя их, можно работать с керамическими подложками, которые уже прошли обжиг. С помощью лазеров пробивают в керамике очень тонкие отверстия - диаметром всего 10 мкм. Механическим сверлением такие отверстия полу­чить нельзя.

    То, что сверление - призвание лазера, ни у кого не вызывало сомнений. Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах.

    4. Лазерная резка и сварка.

    Лазерным лучом можно резать решительно все: ткань, бумагу, дерево, фанеру, резину; пластмассу, керамику, листовой асбест, стекло, листы металла. При этом можно получать аккуратные разрезы по сложным профилям. При резке возгорающихся материалов место разреза обдувают струёй инертного газа; в результате получается гладкий, необожженный край среза. Для резки обычно используют непрерывно генерирующие лазеры. Нужная мощность излучения зависит от материала и толщины заготовки. Например, для резки досок толщиной 5 см применялся СО2-лазер мощностью 200 Вт. Ширина разреза составляла всего 0,7 мм; опилок, естественно, не было.

    Для резки металлов нужны лазеры мощностью в несколько киловатт. Требуемую мощность можно сни­зить, применяя метод газолазерной резки - когда одно­временно с лазерным лучом на разрезаемую поверх­ность направляется сильная струя кислорода. При горении металла в кислородной струе (за счет происхо­дящих в этой струе реакций окисления металла) выде­ляется значительная энергия; в результате может использоваться лазерное излучение мощностью всего 100-500 Вт. Кроме того, струя кислорода сдувает и уносит из зоны разрезания расплав и продукты сгора­ния металла.

    Первый пример такого рода резки - ла­зерный раскрой тканей на ткацкой фабрике. Установка включает СО2-лазер мощностью 100 Вт, систему фоку­сировки и перемещения лазерного луча, ЭВМ, устрой­ство для натяжения и перемещения ткани. В процессе раскроя луч перемещается по поверхности ткани со скоростью 1 м/с. Диаметр сфокусированного светово­го пятна равен 0,2 мм. Перемещениями луча и самой ткани управляет ЭВМ. Установка позволяет, напри­мер, в течение часа раскроить материал для 50 костю­мов. Раскрой выполняется не только быстро, но и весьма точно; при этом края разреза оказываются гладкими и упрочненными. Второй пример - автомати­зированное разрезание листов алюминия, стали, тита­на в авиационной промышленности. Так, СО2-лазер мощностью 3 кВт разрезает лист титана толщиной 5 мм со скоростью 5 см/с. Применяя кислородную струю, получают примерно тот же результат при мощности излучения 100-300 Вт.


    © 2024
    reaestate.ru - Недвижимость - юридический справочник