01.09.2019

Как выращивают кристаллы для лопастей двигателя самолета. Технические параметры лопастных винтов. Зависимость кпд от высоты и скорости полета


По причине отсутствия разумных альтернатив почти все самолеты первой половины прошлого века оснащались поршневыми двигателями и воздушными винтами. Для повышения технических и летных характеристик техники предлагались новые конструкции винтов, имевшие те или иные особенности. В середине тридцатых годов была предложена совершенно новая конструкция, позволявшая получить желаемые возможности. Ее автором являлся нидерландский конструктор А.Я. Деккер.

Работу в области винтовых систем Адриаан Ян Деккер начал еще в двадцатых годах. Тогда им была разработана новая конструкция крыльчатки для ветряных мельниц. Для повышения основных характеристик изобретатель предложил использовать плоскости, напоминающие крыло самолета. В 1927 году такая крыльчатка была установлена на одной из мельниц в Нидерландах и вскоре прошла испытания. К началу следующего десятилетия в эксплуатацию ввели три десятка таких крыльчаток, а в 1935-м ими оснащалось уже 75 мельниц.

Опытный самолет с воздушным винтом А.Я. Деккера. Фото Oldmachinepress.com

В начале тридцатых годов, после проведения испытаний и внедрения новой конструкции на мельницах, А.Я. Деккер предложил использовать схожие агрегаты в авиации. По его расчетам, крыльчатка особой конструкции могла бы использоваться в качестве воздушного винта самолета. Вскоре эта идея была оформлена в виде необходимой документации. Кроме того, конструктор озаботился получением патента.

Использование нестандартной конструкции воздушного винта, по задумке изобретателя, должно было дать некоторые преимущества перед существующими системами. В частности, появлялась возможность снизить обороты винтов при получении достаточной тяги. В связи с этим изобретение А.Я. Деккера нередко именуют «Воздушным винтом с малой скоростью вращения» – Low rotation speed propeller. Так же эта конструкция именовалась и в патентах.

Первая заявка на получение патента была подана в 1934 году. В конце июля 1936-го А.Я. Деккер получил британский патент за номером 450990, подтверждавший его приоритет в создании оригинального винтового движителя. Незадолго до выдачи первого патента появилась еще одна заявка. Второй патент был выдан в декабре 1937 года. За несколько месяцев до этого нидерландский конструктор отправил документы в патентные бюро Франции и США. Последнее в начале 1940 года выдало документ US 2186064.


Конструкция винта второй версии. Чертеж из патента

Британский патент №450990 описывал необычную конструкцию воздушного винта, способную обеспечит достаточные характеристики при определенном сокращении негативных факторов. Конструктор предложил использовать крупную ступицу винта оживальной формы, плавно переходящую в носовую часть фюзеляжа самолета. На ней должны были жестко крепиться крупные лопасти необычной формы. Именно оригинальные обводы лопастей, как считал А.Я. Деккер, могли привести к желаемому результату.

Лопасти «низкооборотного» воздушного винта должны были иметь малое удлинение при большой длине хорды. Их следовало монтировать под углом к продольной оси ступицы. Лопасть получала аэродинамический профиль с утолщенной носовой честью. Носок лопасти предлагалось делать стреловидным. Законцовка располагалась почти параллельно оси вращения винта, а заднюю кромку предлагалось сделать изогнутой с выступающей концевой частью.


Внутреннее устройство винта и редуктора. Чертеж из патента

Первый проект 1934 года предусматривал использование четырех лопастей. Винт такой конструкции должен был крепиться на валу, отходящем от редуктора с требуемыми характеристиками. Значительная площадь лопастей винта в сочетании с аэродинамическим профилем должны были обеспечить прирост тяги. Таким образом, появлялась возможность получить достаточную тягу при меньших оборотах в сравнении с винтом традиционной конструкции.

Уже после подачи заявки на первый патент А.Я. Деккер провел испытания опытного винта и сделал определенные выводы. В ходе проверки было установлено, что предложенная конструкция имеет определенные минусы. Так, воздушный поток позади винта расходился в стороны, и лишь малая его часть проходила вдоль фюзеляжа. Это приводило к резкому ухудшению эффективности хвостовых рулей. Таким образом, в существующем виде винт Деккера не мог использоваться на практике.

Дальнейшая проработка оригинального воздушного винта привела к появлению обновленной конструкции с рядом важнейших отличий. Именно она стала предметом второго британского и первого американского патента. Интересно, что в документе из США, в отличие от английского, описывался не только винт, но и конструкция его приводов.


Самолет Fokker C.I - подобная машина стала летающей лабораторией для проверки идей А.Я. Деккера. Фото Airwar.ru

Обновленное изделие Low rotation speed propeller должно было иметь в своем составе сразу два соосных воздушных винта противоположного вращения. Передний винт по-прежнему предлагалось строить на основе крупной обтекаемой ступицы. Лопасти заднего винта следовало крепить к цилиндрическому агрегату сопоставимых размеров. Как и в предыдущем проекте, кок переднего винта и кольцо заднего могли выполнять функции носового обтекателя самолета.

Оба винта должны были получать лопасти схожей конструкции, представлявшей собой развитие наработок первого проекта. Вновь следовало использовать значительно изогнутые лопасти малого удлинения, имеющие развитый аэродинамический профиль. Несмотря на стреловидную переднюю кромку, длина профиля увеличивалась по направлению от корня к законцовке, образуя характерный изгиб задней кромки.

Согласно описанию патента, передний винт должен был вращаться против часовой стрелки (при взгляде со стороны пилота), задний – по часовой стрелке. Лопасти винтов следовало монтировать соответствующим образом. Количество лопастей зависело от требуемых характеристик винта. В патенте приводилась конструкция с четырьмя лопастями на каждом винте, тогда как более поздний опытный образец получил большее число плоскостей.


Процесс сборки оригинальных винтов, можно рассмотреть внутренние элементы изделия. Фото Oldmachinepress.com

В американском патенте описывалась конструкция оригинального редуктора, позволявшего передавать крутящий момент с одного двигателя на два винта противоположного вращения. Вал двигателя предлагалось соединять с солнечной шестерней первого (заднего) планетарного контура редуктора. При помощи закрепленного на месте зубчатого венца мощность передавалась на шестерни-сателлиты. Их водило соединялось с валом переднего винта. Этот вал также соединялся с солнечной шестерней второй планетарной передачи. Вращающееся водило ее сателлитов соединялось с полым валом заднего винта. Такая конструкция редуктора позволяла синхронно регулировать скорость вращения винтов, а также обеспечивать их вращение в противоположных направлениях.

По задумке изобретателя, основная тяга должна была создаваться лопастями переднего винта. Задний, в свою очередь, отвечал за правильное перенаправление потоков воздуха и позволял избавиться от негативных эффектов, наблюдавшихся в базовом проекте. После двух соосных винтов поток воздуха проходил вдоль фюзеляжа и должен был нормально обдувать хвостовое оперение с рулями. Для получения таких результатов задний винт мог иметь уменьшенную скорость вращения – около трети оборотов переднего.

Оригинальный винтовой движитель создавался с учетом возможного внедрения в новые проекты авиационной техники, и потому требовалось провести полноценные испытания. В начале 1936 года Адриаан Ян Деккер основал собственную компанию Syndicaat Dekker Octrooien, которой предстояло проверить оригинальный воздушный винт, и – при получении положительных результатов – заняться продвижением этого изобретения в авиационной отрасли.


Готовый винт на самолете. Фото Oldmachinepress.com

В конце марта того же года «Синдикат Деккера» приобрел многоцелевой самолет-биплан Fokker C.I нидерландской постройки. Эта машина с максимальным взлетным весом всего 1255 кг оснащалась бензиновым двигателем BMW IIIa мощностью 185 л.с. Со штатным двухлопастным деревянным винтом она могла развивать скорость до 175 км/ч и подниматься на высоту до 4 км. После определенной перестройки и установки нового воздушного винта биплан должен был стать летающей лабораторией. В апреле 1937 года компания А.Я. Деккера зарегистрировала модернизированный самолет; он получил номер PH-APL.

В ходе перестройки опытный самолет лишился штатного капота и некоторых других деталей. Вместо них в носовой части фюзеляжа поместили оригинальный редуктор и пару «винтов низкой скорости вращения». Передний винт получил шесть лопастей, задний – семь. Основой нового винта стала пара ступиц, собранных из алюминиевого каркаса с обшивкой из того же материала. Лопасти имели схожую конструкцию. В связи с установкой винтов нос машины самым заметным образом изменил свою форму. При этом цилиндрический обтекатель заднего винта не выступал за пределы обшивки фюзеляжа.

Испытания летающей лаборатории с оригинальным винтом стартовали в том же 1937 году. Площадкой для них стал аэродром Ипенберг. Уже на ранних стадиях проверок было установлено, что соосные винты с лопастями малого удлинения действительно могут создавать требуемую тягу. С их помощью машина могла выполнять рулежки и пробежки. Кроме того, с определенного времени испытатели попытались поднять машину в воздух. Известно, что опытный Fokker C.I смог выполнить несколько подлетов, но о полноценном взлете речи не шло.


Вид спереди. Фото Oldmachinepress.com

Испытания опытного самолета позволили выявить как плюсы, так и минусы оригинального проекта. Было установлено, что пара винтов противоположного вращения действительно способна создавать требуемую тягу. При этом винтомоторная группа в сборе отличалась сравнительно малыми размерами. Еще одним преимуществом конструкции был сниженный шум, производимый лопастями малого удлинения.

Впрочем, не обошлось без проблем. Воздушный винт А.Я. Деккера и необходимый ему редуктор отличались от существующих образцов излишней сложностью изготовления и обслуживания. Кроме того, экспериментальный винт, установленный на Fokker C.I, показал недостаточные характеристики тяги. Он позволял самолету двигаться по земле и развивать достаточно высокую скорость, но для полетов его тяга была недостаточна.

По-видимому, испытания продолжались до самого начала сороковых годов, однако за несколько лет так и не привели к реальным результатам. Дальнейшим работам помешала война. В мае 1940 года гитлеровская Германия напала на Нидерланды, и всего через несколько дней опытный самолет с необычными воздушными винтами стал трофеем агрессора. Немецкие специалисты ожидаемо проявили интерес к этой разработке. Вскоре летающую лабораторию отправили на один из аэродромов вблизи Берлина.


Запуск двигателя, винты начали вращение. Кадр из кинохроники

Имеются сведения о проведении некоторых испытаний силами немецких ученых, однако эти проверки достаточно быстро закончились. По некоторым данным, первая же попытка немцев поднять самолет в воздух завершилась аварией. Машину не стали восстанавливать, и на этом история смелого проекта закончилась. Единственный самолет, оснащенный винтами типа Low rotation speed propeller, не смог показать себя с лучшей стороны, и потому от оригинальной идеи отказались. В дальнейшем массово использовались только воздушные винты традиционного облика.

Согласно идеям, лежавшим в основе оригинального проекта, особый «Воздушный винт с малой скоростью вращения» должен был стать полноценной альтернативой системам традиционной конструкции. Отличаясь от них некоторой сложностью, он мог иметь преимущества в виде меньших габаритов, сниженных оборотов и сокращенной шумности. Тем не менее, конкурентной борьбы не вышло. Разработка А.Я. Деккера даже не смогла пройти весь цикл испытаний.

Возможно, по мере дальнейшего развития оригинальные воздушные винты смогли бы показать желаемые характеристики и найти применение в тех или иных проектах авиационной техники. Тем не менее, продолжение работ замедлялось в связи с различными проблемами и обстоятельствами, а в мае 1940 года проект был остановлен из-за нападения Германии. После этого необычная идея окончательно осталась без будущего. В дальнейшем в разных странах вновь прорабатывались перспективные конструкции воздушных винтов, но прямые аналоги системы Адриаана Яна Деккера не создавались.

По материалам:
https://oldmachinepress.com/
http://anyskin.tumblr.com/
http://hdekker.info/
http://strangernn.livejournal.com/
https://google.com/patents/US2186064

Основой передвижения по воздуху на принципах аэродинамики является наличие силы, противодействующей сопротивлению воздуха в полете и силе тяжести. На всех современных летательных аппаратах, за исключение планеров, имеется двигатель, мощность которого преобразуется в эту силу. Механизмом, преобразующим вращение вала силовой установки в тягу, является воздушный винт самолета.

Описание воздушного винта

Воздушный винт самолета представляет собой механическое устройство с лопастями, вращаемое валом двигателя и создающее тягу для движения летательного аппарата в воздухе. За счет наклона лопастей винт отбрасывает воздух назад, создавая область пониженного давления перед собой и повышенного давления позади себя. Практически все люди на земле хотя бы раз в жизни имели возможность увидеть этот устройство, поэтому многочисленные наукообразные определения не требуются. Винт состоит из лопастей, втулки, соединенной с двигателем через специальный фланец, балансировочных грузиков, размещаемых на втулке, механизма изменения шага винта и обтекателя, закрывающего втулку.

Другие названия

Как еще называется винт самолета? Исторически сложились два основных названия: собственно воздушный винт и пропеллер. Однако в дальнейшем появились другие названия, подчеркивающие либо особенности конструкции, либо дополнительные функции, возлагаемые на этот агрегат. В частности:

  • Фенестрон. Винт, вставляемый в специальный канал в хвост вертолета.
  • Импеллер. Винт, заключенный в специальное кольцо.
  • Винтовентилятор. Это стреловидные, или саблевидные винты в два ряда с уменьшенным диаметром.
  • Ветровентилятор. Аварийная система резервного обеспечения электроэнергией от набегающего воздушного потока.
  • Ротор. Так иногда называют несущий винт вертолета и некоторые другие.

Теория винта

По своей сути любой винт самолета представляет собой некие подвижные крылья в миниатюре, живущие по тем же законам аэродинамике, что и крыло. То есть, передвигаясь в атмосферной среде лопасти, благодаря своему профилю и наклону, создают поток воздуха, который является движущей силой летательного аппарата. Сила этого потока, помимо конкретного профиля, зависит от диаметра и частоты оборотов винта. При этом зависимость тяги от оборотов - квадратичная, а от диаметра - даже в 4-й степени. Общая формула тяги выглядит следующим образом: P = α * ρ * n 2 * D 4 , где:

  • α - коэффициент тяги винта (зависит от конструкции и профиля лопастей);
  • ρ - плотность воздуха;
  • n - число оборотов винта;
  • D - диаметр винта.

Интересно сравнить с приведенной формулой, еще одну, выведенную из той же теории винта. Это потребная мощность для обеспечения вращения: T = Β * ρ * n 3 * D 5 , где Β - расчетный коэффициент мощности винта.

Из сопоставления этих двух формул видно, что, усиливая обороты винта самолета и увеличивая диаметр пропеллера, потребная мощность двигателя растет экспоненциально. Если уровень тяги пропорционален квадрату оборотов и 4-й степени диаметра, то потребная мощность двигателя растет уже пропорционально кубу оборотов и 5-й степени диаметра винта. С ростом мощности двигателя растет и его вес, что требует еще большей тяги. Очередной заколдованный круг в авиастроении.

Характеристики воздушных винтов

Любой винт, установленный на самолете, имеет набор характеристик, приведенных ниже:

  • Диаметр винта.
  • Геометрический ход (шаг). Под этим термином подразумевается расстояние, которое прошел бы винт, врезаясь в теоретическую твердую поверхность за один оборот.
  • Поступь - фактическое расстояние, проходимое винтом за один оборот. Очевидно, что эта величина зависит от скорости и от частоты вращения.
  • Угол установки лопастей - угол между плоскостью и фактическим наклоном винта.
  • Форма лопастей - большинство современных лопастей имеет саблеобразную, изогнутую форму.
  • Профиль лопастей - сечение каждой лопасти имеет, как правило, крыльевую форму.
  • Средняя хорда лопасти - геометрическое расстояние между передней и задней кромками.

При этом главной характеристикой воздушного винта самолета остается его тяга, то есть то, ради чего он вообще нужен.

Достоинства

Летательные аппараты, использующие в качестве движителя воздушный винт, гораздо экономичней своих турбореактивных «собратьев». Коэффициент полезного действия достигает 86%, что является недостижимой величиной для реактивной авиации. Это их главное преимущество, которое фактически вновь ввело их в строй во время нефтяного кризиса 70-х годов прошлого века. На небольших дистанциях полета, скорость не имеет решающего значения по сравнению с экономичностью, поэтому большинство самолетов региональной авиации - винтовые.

Недостатки

Недостатки у самолета с воздушным винтом тоже имеются. В первую очередь, это минусы чисто «кинетические». Во время вращения винт самолета, обладая собственной массой, оказывает воздействие на корпус самолета. Если лопасти, например, вращаются по часовой стрелке, то корпус стремится вращаться, соответственно, против часовой стрелки. Создаваемые пропеллером завихрения активно взаимодействуют с крыльями и оперением летательного аппарата, создавая различные потоки справа и слева, тем самым дестабилизируя траекторию полета.

И наконец, вращающий пропеллер представляет собой своеобразный гироскоп, то есть он стремится сохранить свое положение, что затрудняет процесс изменения траектории полета для воздушного суда. Эти недостатки винта самолета были известны давно, и конструкторы научились с ними бороться путем внесения определенной асимметричности в конструкции самих кораблей или их управляющих поверхностей (рулей направления, спойлеров и т. д.). Справедливости ради надо отметить, что подобными «кинетическими» недостатками обладают и реактивные двигатели, но в несколько меньшей степени.

К минусам можно отнести и так называемый эффект запирания, когда увеличение диаметра и частоты вращения винта самолета до определенных пределов, перестают давать эффект в виде увеличения тяги. Этот эффект связан с появлением на отдельных участках лопастей потоков воздуха около- или сверхзвуковой скорости, что создает волновой кризис, то есть образование скачков уплотнения воздушной среды. По сути, они преодолевают звуковой рубеж. В связи с этим максимальная скорость самолетов с воздушным винтом не превышает 650-700 км/час.

Пожалуй, единственным исключением стал бомбардировщик Ту-95, развивающий скорость до 950 км/час, то есть почти звуковую скорость. Каждый его двигатель оснащен двумя соосными винтами, вращающимися в противоположных направлениях. Ну и последней проблемой винтовых самолетов является их шумность, требования к которой со стороны авиационных властей, постоянно ужесточаются.

Классификация

Существует много вариантов классификации воздушных винтов самолета. Они подразделяются на группы в зависимости от материала, из которого они изготовлены, от формы лопастей, их диаметра, количества, а также по ряду других характеристик. Однако наиболее важной является их классификация по двум признакам:

  • Первый — винты бывают с изменяемым шагом и фиксированным шагом.
  • Второй - винты бывают тянущие и толкающие.

Первый устанавливается в передней части самолета, а второй, соответственно, в задней его части. Самолет с толкающим винтом возник раньше, однако затем был на некоторое время предан забвению и лишь относительно недавно вновь появился в небе. Сейчас эта компоновка широко применяется на небольших летательных аппаратах. Имеются даже совсем экзотические варианты, оснащенные и тянущими и толкающими лопастями одновременно. Самолет с винтом сзади имеет ряд преимуществ, главным из которых является его более высокое аэродинамическое качество. Однако из-за отсутствия дополнительного обдува крыла потоком воздуха от пропеллера у него худшие взлетно-посадочные характеристики.

Винты с изменяемым шагом

Практически на всех современных средних и крупных самолетах устанавливаются винты с изменяемым шагом. При большом шаге лопастей достигается большая тяга, но если обороты двигателя довольно низкие, набор скорости будет производиться крайне медленно. Это очень похоже на ситуацию с автомобилем, когда на высших передачах пытаться тронуться с места.

Высокая скорость и маленький шаг винта создают опасность срыва потока и падения тяги до ноля. Поэтому в процессе полета шаг постоянно изменяется. Сейчас это делает автоматика, а раньше пилот сам должен был постоянно следить за этим и вручную корректировать угол наклона. Механизм изменения шага винта представляет собой специальные втулки с приводным механизмом, поворачивающие лопасти относительно оси вращения на требуемый градус.

Современная разработка в России

Работы над совершенствованием устройств никогда не прекращались. В настоящее время проводятся испытания нового воздушного винта самолета АВ-112. Он будет применяться на легком военно-транспортном самолете Ил-112В. Это 6-лопастной пропеллер, с коэффициентом полезного действия 87 %, диаметром 3,9 метра и частотой вращения 1200 оборотов в минуту и изменяемым шагом винта. Разработан новый профиль лопастей и облегчена его конструкция.

Назначение и виды авиационных силовых установок.

Силовая установка предназначена для создания силы тяги, необходимой для преодоления лобового сопротивления и обеспечения поступательного движения самолета.

Сила тяги создается установкой, состоящей из двигателя, движителя (винта) и систем, обеспечивающих работу двигательной установки (топливная система, система смазки, охлаждения и т.д.).

В настоящее время в транспортной и военной авиации широкое распространение получили турбореактивные и турбовинтовые двигатели. В спортивной, сельскохозяйственной и различного назначения вспомогательной авиации пока еще применяются силовые установки с поршневыми авиационными двигателями внутреннего сгорания, которые преобразует тепловую энергию сгорающего топлива в энергию вращения воздушного винта..

На самолетах Як-18Т, Як-52 и Як-55 силовая установка состоит из поршневого двигателя М-14П и воздушного винта изменяемого шага В530ТА-Д35.

На многих спортивных самолётах используются двигатели Rotax:

КЛАССИФИКАЦИЯ ВОЗДУШНЫХ ВИНТОВ

Винты классифицируются:

по числу лопастей - двух-, трех-, четырех- и многолопастные;

по материалу изготовления - деревянные, металлические, смешанные;

по направлению вращения (смотреть из кабины самолета по направлению полета) - левого и правого вращения;

по расположению относительно двигателя - тянущие, толкающие;

по форме лопастей - обычные, саблевидные, лопатообразные;

по типам - фиксированные, неизменяемого и изменяемого шага.

Воздушный винт состоит из ступицы, лопастей и укрепляется на валу двигателя с помощью специальной втулки.

Винт неизменяемого шага имеет лопасти, которые не могут вращаться вокруг своих осей. Лопасти со ступицей выполнены как единое целое.

Винт фиксированного шага имеет лопасти, которые устанавливаются на земле перед полетом под любым углом к плоскости вращения и фиксируются. В полете угол установки не меняется.

Винт изменяемого шага имеет лопасти, которые во время работы могут при помощи гидравлического или электрического управления или автоматически вращаться вокруг своих осей и устанавливаться под нужным углом к плоскости вращения.

Рис. 1 Воздушный двухлопастный винт неизменяемого шага

Рис. 2 Воздушный винт В530ТА Д35

По диапазону углов установки лопастей воздушные винты подразделяются:

на обычные, у которых угол установки изменяется от 13 до 50°, они устанавливаются на легкомоторных самолетах;

на флюгируемые - угол установки меняется от 0 до 90°;

на тормозные или реверсные винты, имеют изменяемый угол установки от -15 до +90°, таким винтом создают отрицательную тягу и сокращают длину пробега самолета.

К воздушным винтам предъявляются следующие требования:

винт должен быть прочным и мало весить;

должен обладать весовой, геометрической и аэродинамической симметрией;

должен развивать необходимую тягу при различных эволюциях в полете;

должен работать с наибольшим коэффициентом полезного действия.

На самолетах Як-18Т, Як-52 и Як-55 установлен обычный веслообразный деревянный двухлопастный тянущий винт левого вращения, изменяемого шага с гидравлическим управлением В530ТА-Д35 (Рис. 2).

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНТА

Лопасти при вращении создают такие же аэродинамические силы, что и крыло. Геометрические характеристики винта влияют на его аэродинамику.

Рассмотрим геометрические характеристики винта.

Форма лопасти в плане - наиболее распространенная симметричная и саблевидная.


Рис. 3. Формы воздушного винта: а - профиль лопасти, б - формы лопастей в плане

Рис. 4 Диаметр, радиус, геометрический шаг воздушного винта

Рис. 5 Развертка винтовой линии

Сечения рабочей части лопасти имеют крыльевые профили. Профиль лопасти характеризуется хордой, относительной толщиной и относительной кривизной.

Для большей прочности применяют лопасти с переменной толщиной - постепенным утолщением к корню. Хорды сечений лежат не в одной плоскости, так как лопасть выполнена закрученной. Ребро лопасти, рассекающее воздух, называется передней кромкой, а заднее - задней кромкой. Плоскость, перпендикулярная оси вращения винта, называется плоскостью вращения винта (Рис. 3).

Диаметром винта называется диаметр окружности, описываемой концами лопастей при вращении винта. Диаметр современных винтов колеблется от 2 до 5 м. Диаметр винта В530ТА-Д35 равен 2,4 м.

Геометрический шаг винта - это расстояние, которое движущийся поступательно винт должен пройти за один свой полный оборот, если бы он двигался в воздухе как в твердой среде (Рис. 4).

Угол установки лопасти винта - это угол наклона сечения лопасти к плоскости вращения винта (Рис. 5).

Для определения, чему равен шаг винта, представим, что винт движется в цилиндре, радиус г которого равен расстоянию от центра вращения винта до точки Б на лопасти винта. Тогда сечение винта в этой точке опишет на поверхности цилиндра винтовую линию. Развернем отрезок цилиндра, равный шагу винта Н по линии БВ. Получится прямоугольник, в котором винтовая линия превратилась в диагональ этого прямоугольника ЦБ. Эта диагональ наклонена к плоскости вращения винта БЦ под углом . Из прямоугольного треугольника ЦВБ находим, чему равен шаг винта:

(3.1)

Шаг винта будет тем больше, чем больше угол установки лопасти . Винты подразделяются на винты с постоянным шагом вдоль лопасти (все сечения имеют одинаковый шаг), переменным шагом (сечения имеют разный шаг).

Воздушный винт В530ТА-Д35 имеет переменный шаг вдоль лопасти, так как это выгодно с аэродинамической точки зрения. Все сечения лопасти винта набегают на воздушный поток под одинаковым углом атаки.

Если все сечения лопасти винта имеют разный шаг, то за общий шаг винта считается шаг сечения, находящегося на расстоянии от центра вращения, равном 0,75R, где R-радиус винта. Этот шаг называетсяноминальным, а угол установки этого сечения - номинальным углом установки .

Геометрический шаг винта отличается от поступи винта на величину скольжения винта в воздушной среде (см. Рис. 4).

Поступь воздушного винта - это действительное расстояние, на которое движущийся поступательно винт продвигается в воздухе вместе с самолетом за один свой полный оборот. Если скорость самолета выражена в км/ч, а число оборотов винта в секунду, то поступь винта Н п можно найти по формуле

(3.2)

Поступь винта несколько меньше геометрического шага винта. Это объясняется тем, что винт как бы проскальзывает в воздухе при вращении ввиду низкого значения плотности его относительно твердой среды.

Разность между значением геометрического шага и поступью воздушного винта называетсяскольжением винта и определяется по формуле

S = H - H n . (3.3)

СКОРОСТЬ ДВИЖЕНИЯ И УГОЛ АТАКИ ЭЛЕМЕНТА ЛОПАСТИ ВИНТА

К аэродинамическим характеристикам воздушных винтов относятся угол атаки и тяга воздушного винта.

Углом атаки элементов лопасти винта называется угол между хордой элемента и направлением его истинного результирующего движения W (Рис. 6).

Рис. 6 Угол установки и угол атаки лопастей: а - угол атаки элемента лопасти, б - скорости элемента лопасти

Каждый элемент лопасти совершает сложное движение, состоящее из вращательного и поступательного. Вращательная скорость равна

Где n с - обороты двигателя.

Поступательная скорость -это скорость самолета V . Чем дальше элемент лопасти находится от центра вращения воздушного винта, тем больше вращательная скорость U .

При вращении винта каждый элемент лопасти будет создавать аэродинамические силы, величина и направление которых зависят от скорости движения самолета (скорости набегающего потока) и угла атаки.

Рассматривая Рис. 6, а, нетрудно заметить, что:

Когда воздушный винт вращается, а поступательная скорость равна нулю (V =0), то каждый элемент лопасти винта имеет угол атаки, равный углу установки элемента лопасти ;

При поступательном движении воздушного винта угол атаки элемента лопасти винта отличается от угла наклона элемента лопасти винта (становится меньше его);

Угол атаки будет тем больше, чем больше угол установки элемента лопасти винта;

Результирующая скорость вращения элемента лопасти винта W равна геометрической сумме поступательной и вращательной скоростей и находится по правилу прямоугольного треугольника

(3.5)

Чем больше вращательная скорость, тем больше угол атаки элемента лопасти воздушного винта. И наоборот, чем больше поступательная скорость воздушного винта, тем меньше угол атаки элемента лопасти воздушного винта.

В действительности картина получается сложнее. Так как винт засасывает и вращает воздух, отбрасывает его назад, сообщая ему дополнительную скорость v , которую называют скоростью подсасывания. В результате истинная скорость W" будет по величине и направлению отличаться от скорости подсасывания, если их сложить геометрически. Следовательно, и истинный угол атаки " будет отличаться от угла (Рис. 6, б).

Анализируя вышесказанное, можно сделать выводы:

при поступательной скорости V =0 угол атаки максимальный и равен углу установки лопасти винта;

при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла установки;

при большой скорости полета угол атаки лопастей может стать отрицательным;

чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;

если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается и может стать отрицательным.

Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.

Сила тяги винта возникает в результате действия аэродинамической силы R на элемент лопасти винта при его вращении (Рис.1).

Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению Х элемента лопасти винта.

Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р .

Тяга винта зависит от диаметра винта Д , числа оборотов в секунду n , плотности воздуха и подсчитывается по формуле (в кгс или Н)

Где - коэффициент тяги винта, учитывающий форму лопасти в плане, форму профиля и угла атаки, определяется экспериментально. Коэффициент тяги воздушного винта самолетов Як-18Т, Як-52 и Як-55 - В530ТА-Д35 равен 1,3.

Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.

Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.

Сила сопротивления вращению определяется по формуле

(3.7)

Где Сх л - коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;

W - результирующая скорость, м/с;

S л - площадь лопасти;

К - количество лопастей.


Рис.1 Аэродинамические силы воздушного винта.

Рис. 2. Режимы работы воздушного винта

Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:

М тр в r в (3.8)

Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле

(3.9)

Где N e -эффективная мощность двигателя.

Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. , а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X = R . Это режим нулевой тяги (Рис. , б).

При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или авторотацией (Рис. , в).

При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. , г).

Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.

На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.

ЗАВИСИМОСТЬ ТЯГИ ВИНТА ОТ СКОРОСТИ ПОЛЕТА.

С увеличением скорости полета углы атаки лопасти винта, неизменяемого шага и фиксированного, быстро уменьшаются, тяга винта падает. Наибольший угол атаки лопасти винта будет на скорости полета, равной нулю, при полных оборотах двигателя.

Соответственно уменьшается тяга воздушного винта до нулевого значения и далее становится отрицательной. Раскручивается вал двигателя. Чтобы предупредить раскрутку винта, уменьшают обороты двигателя. Если двигатель не дросселировать, то может произойти его разрушение.

Зависимость тяги винта В530ТА-Д35 от скорости полета изображена на графике Рис. 7. Для его построения замеряют тягу воздушного винта при разных скоростях. Полученный график называется характеристикой силовой установки по тяге.

Рис. 7 Характеристика силовой установки М-14П по тяге (для Н=500 м) самолетов Як-18Т, Як-52 и Як-55 с воздушным винтом В530ТА-Д35

ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА.

Выясняя зависимость тяги от скорости полета, рассматривалась работа винта на неизменной высоте при постоянной плотности воздуха. Но при полетах на разных высотах плотность воздуха влияет на тягу воздушного винта. С увеличением высоты полета плотность воздуха падает, соответственно пропорционально будет падать и тяга винта (при неизменных оборотах двигателя). Это видно при анализе формулы (3.6).

ТОРМОЗЯЩИЙ МОМЕНТ ВИНТА И КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ.

Как ранее рассматривалось, тормозящий момент винта противодействует крутящему моменту двигателя.

Для того чтобы винт вращался с постоянными оборотами, необходимо, чтобы тормозящий момент М т, равный произведению
, был равен крутящему моменту двигателя М кр, равному произведению F d ,. т.е. М т =М кр или =F d (Рис. 8).

Рис. 8 Тормозящий момент воздушного винта и крутящий момент двигателя

Если это равенство будет нарушено, то двигатель будет уменьшать обороты или увеличивать.

Увеличение оборотов двигателя приводит к увеличению М кр и наоборот. Новое равновесие устанавливается на новых оборотах двигателя.

МОЩНОСТЬ, ПОТРЕБНАЯ НА ВРАЩЕНИЕ ВОЗДУШНОГО ВИНТА

Эта мощность затрачивается на преодоление сил сопротивления вращению винта.

Формула для определения мощности воздушного винта (в л. с.) имеет вид:

(3.10)

Где - коэффициент мощности, зависящий от формы воздушного винта, числа лопастей, угла установки, формы лопасти в плане, от условия работы воздушного винта (относительной поступи)

Из формулы (3.10) видно, что потребная мощность для вращения воздушного винта зависит от коэффициента мощности, от скорости и высоты полета, оборотов и диаметра воздушного винта.

С увеличением скорости полета уменьшается угол атаки элемента лопасти воздушного винта, количество отбрасываемого назад воздуха и его скорость, поэтому уменьшается и потребная мощность на вращение воздушного винта. С увеличением высоты полета плотность воздуха уменьшается и потребная на вращение воздушного винта мощность также уменьшается.

С увеличением оборотов двигателя увеличивается сопротивление вращению воздушного винта и потребная мощность на вращение воздушного винта увеличивается.

Воздушный винт, вращаемый двигателем, развивает тягу и преодолевает лобовое сопротивление самолета, самолет движется.

Работа, производимая силой тяги воздушного винта за 1 сек. при движении самолета, называется тягой или полезной мощностью воздушного винта.

Тяговая мощность воздушного винта определяется по формуле

(3.11)

Где Р в - тяга, развиваемая воздушным винтом; V-скорость самолета.

С увеличением высоты и скорости полета тяговая мощность воздушного винта уменьшается. При работе воздушного винта, когда самолет не движется, развивается максимальная тяга, но тяговая мощность при этом равна нулю, так как скорость движения равна нулю.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ВОЗДУШНОГО ВИНТА.

ЗАВИСИМОСТЬ КПД ОТ ВЫСОТЫ И СКОРОСТИ ПОЛЕТА

Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, n b , будет меньше мощности двигателя N e , затраченной на вращение воздушного винта.

Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается . Он определяется по формуле

(3.12)

Рис. 9 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 10 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 11 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

Величина КПД воздушного винта зависит от тех же факторов, что и тяговая мощность воздушного винта.

КПД всегда меньше единицы и достигает у лучших воздушных винтов величины 0,8...0,9.

Np - потребная мощность.

Для уменьшения скорости вращения воздушного винта в двигателе применяется редуктор.

Степень редукции подбирается таким образом, чтобы на номинальном режиме концы лопастей обтекались дозвуковым потоком воздуха.

Рис. 12 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 13 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 14 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

График зависимости располагаемой эффективной мощности от скорости полета для самолетов Як-52 и Як-55 изображен на Рис. 9.

График Рис. 10 называется характеристикой силовой установки по мощности.

При V=0, Np=0; при скорости полета V=300 км/ч, Np= =275 л.с. (для самолета Як-52) и V=320 км/ч, Np=275 л. с. (для самолета Як-55), где Np - потребная мощность.

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 11.

Рис. 15 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 11.

ВИНТЫ ИЗМЕНЯЕМОГО ШАГА

Для устранения недостатков воздушных винтов неизменяемого шага и фиксированного применяется воздушный винт изменяемого шага (ВИШ). Основоположником теории ВИШ является Ветчинкин.

ТРЕБОВАНИЯ К ВИШ:

ВИШ должен устанавливать на всех режимах полета наивыгоднейшие углы атаки лопастей;

Снимать с двигателя номинальную мощность на всем рабочем диапазоне скоростей и высот;

Сохранять максимальное значение коэффициента полезного действия на возможно большем диапазоне скоростей.

Лопасти ВИШ либо управляются специальным механизмом, либо устанавливаются в нужное положение под влиянием сил, действующих на воздушный винт. В первом случае это гидравлические и электрические воздушные винты, во втором - аэродинамические.

Гидравлический винт - воздушный винт, у которого изменение угла установки лопастей производится давлением масла подаваемого в механизм, находящийся во втулке винта.

Электрический винт - воздушный винт, у которого изменение угла установки лопастей производится электродвигателем, соединенным с лопастями механической передачей.

Аэромеханический винт - воздушный винт, у которого изменение угла установки лопастей производится автоматически - аэродинамическими и центробежными силами.

Наибольшее распространение получили гидравлические ВИШ. Автоматическое устройство в винтах изменяемого шага предназначено для сохранения постоянными заданных оборотов воздушного винта (двигателя) путем синхронного изменения угла наклона лопастей при изменении режима полета (скорости, высоты) и называется регулятором постоянства оборотов (РПО).


Рис. 16 Работа воздушного винта изменяемого шага В530ТА-Д35 при разных скоростях полета

РПО совместно с механизмом поворота лопастей изменяет шаг винта (угол наклона лопастей) таким образом, чтобы обороты, заданные летчиком с помощью рычага управления ВИШ, при изменении режима полета оставались неизменными (заданными).

При этом следует помнить, что обороты будут сохраняться до тех пор, пока эффективная мощность на валу двигателя N e будет больше мощности, потребной для вращения воздушного винта при установке лопастей на самый малый угол наклона (малый шаг).

На Рис. 16 показана схема работы ВИШ.

При изменении скорости полета от взлетной до максимальной в горизонтальном полете угол установки лопастей возрастает от своего минимального значения мин до максимального макс (большой шаг). Благодаря этому углы атаки лопасти изменяются мало и сохраняются близкими к наивыгоднейшим.

Работа ВИШ на взлете характерна тем, что на взлете используется вся мощность двигателя - развивается наибольшая тяга. Это возможно при условии, что двигатель развивает максимальные обороты, а каждая часть лопасти винта развивает наибольшую тягу, имея наименьшее сопротивление вращению.

Для этого необходимо, чтобы каждый элемент лопасти воздушного винта работал на углах атаки, близких к критическому, но без срыва воздушного потока. На Рис. 16, а видно, что угол атаки лопасти перед взлетом (V =0) за счет перетекания воздуха со скоростью V немного отличается от угла наклона лопасти на величину ф мин. Угол атаки лопасти соответствует величине максимальной подъемной силы.

Сопротивление вращению достигает в этом случае величины, при которой мощность, расходуемая на вращение винта, и эффективная мощность двигателя сравниваются и обороты будут неизменными. С увеличением скорости угол атаки лопастей воздушного винта уменьшается (Рис. 16, б). Уменьшается сопротивление вращению и воздушный винт как бы облегчается. Обороты двигателя должны возрастать, но РПО удерживает их за счет изменения угла атаки лопастей постоянными. По мере увеличения скорости полета лопасти разворачиваются на больший угол ср .

При выполнении полета на максимальной скорости ВИШ также должен обеспечивать максимальное значение тяги. При полете на максимальной скорости угол наклона лопастей имеет предельное значение р макс (Рис. 16, в). Следовательно, при изменении скорости полета происходит изменение угла атаки лопасти, при уменьшении скорости полета угол атаки увеличивается - винт затяжеляется, при увеличении скорости полета угол атаки уменьшается - винт облегчается. РПО автоматически переводит лопасти винта на соответствующие углы.

При увеличении высоты полета мощность двигателя уменьшается и РПО уменьшает угол наклона лопастей, чтобы облегчить работу двигателя, и наоборот. Следовательно, РПО удерживает обороты двигателя с изменением высоты полета постоянными.

При заходе на посадку воздушный винт устанавливается на малый шаг, что соответствует оборотам взлетного режима. Это дает возможность летчику при выполнении всевозможных маневров на глиссаде посадки получить взлетную мощность двигателя при увеличении оборотов до максимальных.

Надежин Никита

Теория воздушного винта: от первых пропеллеров к эффективным агрегатам будущего.

ПЛАН:

Введение.

1.1. Воздушный винт.

1.2.Технические требования к модели самолёта класса F1B.

3.Описание конструкции воздушного винта.

1.4. Описание модели самолёта.

Заключение.

Список литературы, программное обеспечение.

Приложения.


Введение

Воздушный винт, пропеллер, движитель, в котором радиально расположенные профилированные лопасти, вращаясь, отбрасывают воздух и тем самым создают силу тяги («Пропеллер» - студенческая многотиражка в Московском авиационном институте). Воздушный винт состоит из одной, двух или более лопастей, соединенных друг с другом ступицей. Основная часть винта - лопасти, так как только они создают тягу.

Идею воздушного винта предложил в 1475 году Леонардо да Винчи, и применил его для создания тяги впервые в 1754 году В.М. Ломоносов в модели прибора для метеорологических исследований.

М.В. Ломоносов

На самолете А.Ф. Можайского использовались воздушные винты. Братья Райт использовали толкающий винт.

Ещё до начала проектирования первого самолёта, А.Ф. Можайским были изготовлены несколько моделей самолёта, у которых движителем был воздушный винт, приводимый во вращение резиновым жгутом. В Америке братья Райт также сначала изготавливали модели самолёта, и только потом был спроектирован первый летающий самолёт.

С начала 20 века во всём мире молодые люди начали проектировать и строить модели самолётов и проводить соревнования. В нашей стране первые соревнования напутствовал Н.Е. Жуковский в1926году. Авиамодельный спорт стал культивироваться Международной авиационной федерацией FAI, разработан кодекс FAI, проводятся Всероссийские и международные соревнования.

По правилам соревнований все модели участников должны соответствовать определённым требованиям и, чтобы победить на соревнованиях, надо изготовить модель летающую лучше всех. Для этого необходимо увеличить высоту взлёта модели, но сделать это сложно, так как запас энергии на модели ограничен весом резиномотора, который проверяется во время проведения соревнований. Остается только увеличивать коэффициент использования энергии резины, а это механизация в полёте воздушного винта по изменению геометрических характеристик. Крутящий момент резиномотора переменный и имеет нелинейную характеристику. А крутящий момент необходимый для привода воздушного винта пропорционален диаметру винта в пятой степени. Для реализации имеющегося крутящего момента и увеличения КПД воздушного винта надо в полёте изменять диаметр и шаг. В существующих конструкциях изменяют шаг винта, так как это конструктивно проще, но это влечёт за собой увеличение скорости полёта, а значит и вредного сопротивления крыла. Выигрыш получается небольшой. Увеличение диаметра винта с одновременным увеличением шага позволяет использовать воздушный винт более качественно. Выигрыш получается больше.

Задача : проектирование механизмов, позволяющих увеличить КПД, уменьшить расход топлива для выработки различных видов энергии, приводящих к снижению вредных выбросов в атмосферу.

Тема данной работы очень актуальна для понимания развития современной техники. Работа по увеличению КПД воздушного винта делает возможным в дальнейшем проектирование более сложных механизмов, направленных на увеличение КПД других изделий, потребляющих тепловую и электрическую энергию и связанных с улучшением экологии окружающего пространства. В современном мире это очень важно так как применение механизмов, увеличивающих КПД на машинах, генераторах ведет к уменьшению расхода топлива, а следовательно выбросов продуктов сгорания в атмосферу и улучшению состояния экологии окружающей среды и здоровья человека.

Цель данной работы : проектирование механизма увеличивающего КПД использования механической энергии воздушным винтом резиномоторной модели самолета.

Значение работы : На примере проектирования простого механизма рассматриваются вопросы проектирования более сложных механизмов, которые можно эффективно использовать в будущем при разработке новой авиационной техники.


1. Воздушный винт

В спокойном воздухе самолет может лететь горизонтально или с набором высоты только тогда, когда у него есть движитель. Таким движителем может быть воздушный винт или реактивный двигатель. Воздушный винт должен приводиться во вращение механическим двигателем. И в том и в другом случае тяга создается за счет того, что некоторая масса воздуха или выхлопных газов отбрасывается в сторону, противоположную движению.

Рис.4. Схема сил, действующих на воздушный винт.

При своем движении лопасть воздушного винта описывает в пространстве винтовую линию. В своем поперечном сечении она имеет форму крыльевых профилей. В правильно спроектированном винте все сечения лопасти встречают поток под некоторым наивыгоднейшим углом. При этом на лопасти развивается сила, аналогичная аэродинамической силе на крыле. Эта сила, будучи разложенной на две составляющие (в плоскости винта и перпендикулярную плоскости) дают тягу и сопротивление ращению данного элемента лопасти. Просуммировав силы, действующие на все элементы лопастей, получают тягу, развиваемую винтом, и момент, потребный для вращения винта (Рисунок 4). В зависимости от величины потребляемой мощности применяются воздушные винты с различным числом лопастей - двух, трех и четырех лопастные, а также соосные винты, вращающиеся в противоположных направлениях для уменьшения потерь мощности на закручивание отбрасываемой струи воздуха. Такие винты применяют на самолетах Ту-95, Ан-22, Ту-114. На Ту-95 установлены 4 двигателя НК-12 конструкции Николая Кузнецова (Рисунок 5). Концы лопастей у этих винтов вращаются со сверхзвуковой скоростью, создавая сильный шум (Натовское название самолета Ту-95 - «Медведь», принят на вооружение в 1956 году и ВВС Росси используют этот самолет по сей день). В авиамодельном спорте для получения высоких результатов на соревнованиях используют и однолопастные винты. Коэффициент полезного действия винта зависит от величины покрытия винта

(где - число лопастей, - максимальная ширина лопасти), чем меньше величина покрытия винта, тем более высокий КПД винта можно получить. Беспредельному уменьшению покрытия препятствует прочность лопасти. Многолопастные винты не выгодны, так как они понижают КПД.

Рис.5. Самолет ТУ-95 с соосным винтом.

Первые воздушные винты имели фиксированный в полете шаг, определяемый постоянным углом установки лопастей винта. Для сохранения достаточно высокого КПД во всем диапазоне скоростей полета и мощностей двигателя, а так же для флюгирования и изменения вектора тяги при посадке применяются винты изменяемого шага (ВИШ). В таких винтах лопасти поворачиваются во втулке относительно продольной оси механическим, гидравлическим или электрическим механизмом.

Для увеличения тяги и КПД при малой поступательной скорости и большой мощности воздушный винт помещают в профилированное кольцо, в котором скорость струи в плоскости вращения больше, чем у изолированного винта, и само кольцо вследствие циркуляции скорости создает дополнительную тягу.

Лопасти воздушного винта изготавливают из дерева, дюралюминия. Стали, магния, композиционных материалов. При скоростях полета 600-800 км/час КПД воздушного винта достигает 0,8-0,9. При больших скоростях под влиянием сжимаемости воздуха КПД падает. Поэтому воздушный винт выгоден на дозвуковых скоростях полета самолета.

Идею воздушного винта предложил в 1475 году Леонардо да Винчи (Рисунок 1), а применил его для создания тяги впервые в 1754 году М.В. Ломоносов в модели прибора для метеорологических исследований (Рисунок 2). К середине XIX века на пароходах применялись гребные винты, аналогичные воздушному винту. В XX веке воздушные винты стали применяться на дирижаблях, самолетах, аэросанях, вертолетах, аппаратах на воздушной подушке и др.


Рис. 1. Геликоптер. Идея, предложенная Леонардо да Винчи. Модель по эскизу Леонардо да Винчи.

Рис.2. Модель прибора М.В. Ломоносова для метеорологических исследований.

Методы аэродинамического расчета и проектирования воздушных винтов основаны на теоретических и экспериментальных исследованиях. В 1892-1910 годах русский инженер-исследователь, изобретатель С.К. Джевецкий разработал теорию изолированного элемента лопасти, а в 1910-1911 годах русские ученые Б.Н. Юрьев и Г.Х. Сабинин развили эту теорию. В 1912-1915 годах Н.Е. Жуковский создал вихревую теорию, дающую наглядное физическое представление о работе винта и других лопаточных устройств и устанавливающую математическую связь между силами, скоростями и геометрическими параметрами в такого рода машинах. В дальнейшем развитии этой теории значительная роль принадлежит В.П. Ветчинкину. В 1956 году советским ученым Г.И. Майкопаровым вихревая теория воздушного винта была распространена на несущий винт вертолета.

Н.Е. Жуковский

В настоящее время для создания крупногабаритных магистральных самолетов потребовались двигательные установки большей мощности и очень экономичные. Одним из вариантов таких двигателей стали турбовентиляторные двигатели. Они обладают большой тягой и хорошей экономичностью. На всех зарубежных самолетах устанавливаются именно такие двигатели.

Развитие идеи Леонардо да Винчи воплотилось в создании газотурбинных двигателей с осевым компрессором. Лопатки осевого компрессора создают при своем движении повышение давления воздуха. Каждая ступень повышает давление на определенную величину и в конце сжатый компрессором воздух попадает в камеру сгорания, где к нему подводится тепло в виде сгорающего горючего. После чего горячий газ поступает на турбину, которая может быть и осевой и радиальной. Турбина в свою очередь крутит компрессор, а потерявшие часть энергии газы попадают в сопло и создают реактивную тягу.

Лопатки компрессора, это часть лопасти воздушного винта. Таких лопаток в каждой ступени может быть несколько десятков. Между ступенями находится неподвижный спрямляющий аппарат, который состоит из таких же лопаток, только установленных под определенным углом к закрученному воздушному потоку. Закрутка происходит за счет движения лопаток компрессора по окружности. Количество ступеней компрессора может быть более 15.

Если всю энергию, полученную в результате сгоревшего топлива, срабатывать на турбине, то на валу двигателя получится избыток мощности, который можно использовать для привода воздушного винта. Получится турбовинтовой двигатель, и тяга будет создаваться воздушным винтом. Тяга за счет выхлопных газов будет минимальна.

Следующим этапом развития стали двухконтурные двигатели. В этих двигателях часть воздуха проходит не через компрессор (снаружи), обычно это происходит после первых двух ступеней компрессора. Такой двигатель называется турбовентиляторным. Тяга двигателя создается за счет вентилятора (первые две ступени компрессора) и реактивной струи выхлопных газов. В данном случае вентилятор, а это по сути - воздушный винт, находится в профилированном корпусе.

Следующий этап развития это турбовинтовентиляторный двигатель (НК-93). Почему стали изготавливать такие двигатели? Да потому, что КПД винта на дозвуковых скоростях полета может приближаться к 0.9, а КПД реактивной струи гораздо меньше. Турбовинтовентиляторный двигатель в будущем - самый перспективный двигатель для самолетов, летающих на дозвуковых скоростях.

Двухконтурный турбореактивный двигатель.

В 1985 году ОКБ имени Н.Д. Кузнецова началось изучение концепции винтовентиляторного двигателя высокой степени двухконтурности. Было определено, что закапотированный двигатель с соосными винтами обеспечит на 7% большую тягу, чем незакопотированный ТВВД с одноступенчатым вентилятором.

В 1990 году КБ приступило к проектированию такого двигателя, получившего обозначение НК-93. Он предназначался прежде всего для самолетов ИЛ-96М, Ту-204П, Ту-214, но заинтересованность в новом двигателе проявило и Министерство обороны (планируется установка его на военно-транспортном Ту-330).

Самолет ИЛ-76 ЛЛ с двигателем НК-93.

Двигатель НК-93.

НК-93 выполнен по трехвальной схеме с двигателем закопотированного двухрядного винтовентилятора противоположного вращения СВ-92 через редуктор. Редуктор планетарный с 7 сателлитами. Первая ступень винтовентилятора 8-лопастная, вторая (на нее приходится 60% мощности) - 10-лопастная. Все лопасти саблевидные с углом стреловидности 30 0 на первых 5 двигателях изготавливали из магниевого сплава. Теперь их изготавливают из углепластика.

Схема двигателя НК-93.

Технические характеристики нового двигателя в мире аналогов не имеют. По параметрам термодинамического цикла НК-93 близок к ныне разрабатываемым за рубежом двигателям, но имеет лучшую экономичность (на 5%). Летные испытания проводятся на самолете ИЛ-76ЛЛ. Изюминкой этой винтомоторной установки является планетарный редуктор и винтовентилятор. Угол установки лопастей может изменяться в пределах 110 0 при работе двигателя. Подобный редуктор применяется в двигателях НК-12 на самолете Ту-95 и подобный редуктор используется в установках перекачки газа на магистральных газопроводах (НК-38). Так что опыт у нас есть.

На занятиях в авиамодельной лаборатории Костромского областного центра детского (юношеского) технического творчества рассматриваются вопросы теории полета самолетов и летающих моделей. С целью улучшения летных характеристик резиномоторных моделей, а также улучшения результатов выступления на соревнованиях была рассмотрена работа винтомоторной установки. Рассмотрев характеристики резиномотора, энергия которого определяет высоту взлета модели, выяснено, что крутящий момент резины на валу винта имеет нелинейную характеристику. Максимальный крутящий момент превышает средний момент в 5-6 раз. Крутящий момент, необходимый для вращения винта равен

где

Аэродинамический коэффициент

Плотность воздуха

Диаметр винта

Обороты винта в секунду

Из теории известно, что для того, чтобы КПД винта был достаточно высоким, необходимо неограниченно увеличивать диаметр винта. Как известно, конструктивно это условие выполнить нельзя. Но, зная это видим один из возможных способов увеличения продолжительности полета резиномоторной модели. Было принято решение компенсировать изменение крутящего момента изменением диаметра винта. Конструктивно изменять диаметр винта на величину, пропорциональную изменению крутящего момента довольно сложно, поэтому введено еще и изменение шага винта. Получился винт изменяемого диаметра и шага (ВИДШ). В большой авиации изменение диаметра воздушного винта не применяется из-за сложности конструкции и больших скоростей на концах лопастей, соизмеримых со скоростью звука, уменьшающих КПД винта.

Можно увеличить КПД воздушного винта путем уменьшения покрытия винта. Это значит, сделать винт однолопастным. Такие винты сейчас применяются на скоростных кордовых моделях. Результаты очень положительные. Скорость возрастает на 10-15 км/час, но там другие условия работы. Двигатель работает на постоянных оборотах и постоянной максимальной мощности. На резиномоторных моделях энергия резиномотора переменна и не линейна. При использовании однолопастного винта с изменяемым диаметром и шагом возникают сложности с противовесом лопасти винта. Поэтому принято решение для увеличения КПД воздушного винта резиномоторной модели самолета использовать винт двулопастный с изменяемым диаметром и шагом (ВИДШ).


2. Технические требования к модели самолета класса F 1 B

На конкурс представлена резиномоторная модель самолёта по классификации ФАИ - F1B, изготовленная Надежиным Никитой под руководством Смирнова Виктора Борисовича.

С этой моделью Надежин Никита в 2013 году на Первенстве России по авиационному моделированию стал чемпионом.

Резиномоторная модель - это модель летательного аппарата, которая приводится в движение двигателем из резины; подъёмная сила модели возникает за счёт аэродинамических сил, воздействующих на несущие поверхности модели.

Технические характеристики резиномоторных моделей должны соответствовать требованиям FAI:

площадь несущей поверхности - 17-19 дм 2

минимальный вес модели без резиномотора - 200 г

максимальный вес смазанного резиномотора - 30 г.

Каждый участник соревнований имеет право на 7 зачётных полётов продолжительностью не более 3-х минут каждый. Запуск модели должен быть произведён в ограниченное время, объявленное заранее. Сумма времени всех зачётных полётов каждого участника используется для окончательного распределения мест среди участников.

За время полёта модель может улетать от места старта на расстояние до 2,5-3 км. Для поиска модели на неё устанавливается радиопередатчик весом 4 грамма с питанием на несколько суток. У участника соревнований имеется радиоприёмник с направленной антенной для обнаружения модели.

Взлёт модели осуществляется за счёт энергии резиномотора, которая приводит во вращение воздушный винт. Изменение крутящего момента резиномотора при его раскрутке происходит неравномерно и максимальное его значение превосходит среднее значение в 4-5 раз. Поэтому в первоначальный момент взлёта модели воздушный винт работает на нерасчетных режимах, т.е. идет проскальзывание винта в воздушном потоке. Для того чтобы аэродинамически загрузить воздушный винт и использовать имеющуюся энергию резиномотора в полном объёме, необходимо увеличивать диаметр винта и угол установки лопастей винта в начальный период взлёта. Это хорошо показано в книге А.А.Болонкина «Теория полета летающих моделей»


3. Описание конструкции воздушного винта

Особенностью данной модели является воздушный винт (Приложения №4,5,6), который во время взлёта модели изменяет диаметр и шаг. Механизм винта при изменении крутящего момента резиномотора позволяет изменять диаметр винта и угол установки лопастей. Это позволяет существенно увеличить КПД винта и, следовательно, высоту взлёта модели, и, соответственно, увеличиваются продолжительность полёта и результат на соревнованиях.

Конструкция механизма винта представлена на сборочном чертеже 10.1000.5200.00 СБ ВИДШ (винт изменяемого диаметра и шага, Приложение №3) и представляет собой корпус, в котором на 2-х подшипниках вращается вал винта из стали ЗОХГСА. На валу установлена ступица винта, также на 2-х подшипниках, далее идёт втулка, имеющая возможность вращаться вокруг вала. На втулке установлены шатуны, на которых подвешены лопасти винта, изготовленные из бальзы. Шатуны установлены на осях, расположенных на радиусе R=11 от оси вала и под углом к нему примерно 6 градусов. Втулка и ступица соединены между собой упругим элементом (резиновое кольцо).В ступице имеется паз ограничивающий перемещение втулки относительно ступици. Это определяет рабочие углы поворота втулки и величину выдвижения шатунов. При приложении к валу винта крутящего момента относительно лопастей винта возникает сила, проворачивающая втулку относительно ступицы, при этом происходит выдвижение шатунов из ступицы и их проворот вокруг поперечной оси вала за счёт движения осей шатуна по образующей однополостного гиперболоида вокруг вала. В конструкции предусмотрено изменение угла наклона осей шатунов, что позволяет регулировать диапазон изменения шага при регулировке модели. (в первоначальном варианте регулировка пределов изменения шага не предусматривалась, чертёж 10.0000.5100.00 СБ, Приложение №2). Перемещение шатунов пропорционально крутящему моменту, приложенному к валу винта, относительно лопастей. На втулке установлен стандартный стопор, стопорящий лопасти винта в нужном положении после раскрутки резиномотора. Изменение шага при увеличении диаметра на 25 мм составляет 5 0 , что на R лопасти=200мм изменяет шаг с 670 мм до 815 мм. Для изготовления деталей использованы малогабаритные шарикоподшипники и высокопрочные материалы Д16Т, ЗОХГСА, 65С2ВА, 12х18Н10Т и углепластик.


4. Описание модели самолета

Конструкция самой модели представлена на чертеже 10.0000.5000.00СБ. (Приложение№1,7)

Продольный набор крыла состоит из двух углепластиковых лонжеронов переменного сечения, углепластикового кессона, передней и задней кромок из углепластика.

Поперечный набор состоит из нервюр, выполненных из бальзы, покрытых сверху и снизу углепластиковыми накладками толщиной 0,2 мм. На крыле применен профиль «Андрюков». Центр тяжести расположен на 54% САХ.

Весь набор собран на эпоксидной смоле. Крыло обтянуто синтетической бумагой (полиэстером) на эмалите. Для удобства транспортирования крыло имеет поперечный разъём с узлами крепления. Стабилизатор и киль выполнены аналогично крылу.

Фюзеляж состоит из двух частей. Передняя силовая часть выполнена из трубки, изготовленной из СВМ (кевлар) и углепластикового пилона, в который установлены программный механизм (таймер) и передатчик для поиска модели, спереди и сзади вклеены силовые шпангоуты из алюминиевого сплава Д16Т.

Хвостовая часть представляет конус и состоит из 2-х слоёв высокопрочной алюминиевой фольги Д16Т толщиной 0,03 мм, между которыми вклеен слой углеткани на эпоксидной смоле. На конце хвостовой части установлена площадка для крепления стабилизатора и механизм перебалансировки и посадки модели.

На модели используются резиномоторы из резины FАI “Super sport”, состоящие из 14 колец сечением 1/8 //

Применение в данном классе моделей механизма позволяющего одновременно изменять диаметр и шаг винта в зависимости от крутящего момента резиномотора, позволило увеличить коэффициент полезного действия воздушного винта, что выразилось в прибавлении высоты взлета модели на 10-12 метров, продолжительность полета увеличилась на 35-40 секунд по сравнению с другими моделями, а также улучшилась стабильность полетов. И как следствие - победа на соревнованиях.


Заключение

Вывод : Принцип преобразования поступательного движения во вращательное, заложенное в данной конструкции, может использоваться в случаях, когда нельзя использовать простые рычажные механизмы.

Практические рекомендации : Подобный механизм можно использовать в приводе элеронов крылатой ракеты. Поступательное движение тяги внутри крыла, вдоль задней кромки преобразуется во вращательное движение элерона. Использовать другие механизмы довольно сложно из-за малой строительной высоты профиля крыла в районе расположения элерона и удаления элерона от корпуса ракеты.

Таким образом, на примере проектирования простейшего механизма по увеличению КПД можно рассмотреть вопросы по созданию более совершенных механизмов преобразования энергии углеводородов в механическую тепловую и электрическую энергию, что в современных условиях позволит снизить уровень выброса вредных веществ в атмосферу и улучшит состояние экологии окружающей среды и здоровье Человека.


Список литературы, программного обеспечения

1.А.А.Болонкин. Теория полета летающих моделей, изд. ДОСААФ 1962г.

2.Э.П.Смирнов, Как спроектировать и построить летающую модель самолёта, изд. ДОСААФ 1973г.

3. Шмитц Ф.В. Аэродинамика малых скоростей, изд. ДОСААФ 1961г.

4. Проектирование выполнено в программе Компас V-11

Приложение 1.

Приложение 2.

Приложение 3.


© 2024
reaestate.ru - Недвижимость - юридический справочник