27.06.2020

Инфракрасная съемка. Инфракрасная фотография: теория и практика. История создания и развития ИК-материалов


Обработка инфракрасных фотографий - такой же творческий процесс, как и работа с любым другим жанром. Но здесь также присутствуют определённые методы, благодаря которым ИК фотография может быть очень впечатляющей.

Далее будет описан процесс добавления ложного цвета, а именно жёлтого и цвета воды. Также я покажу альтернативный вариант. При обработке ИК фотографии существует множество разных цветов, которые создадут эффектность, например, красный и синий.

1. Конвертация в DNG

Для обработки снимков я рекомендую загрузить программу DNG Profile Editor от Adobe. С её помощью Вы сможете создать профиль для своей камеры и использовать его в Camera RAW и Lightroom, или любой другой программе, которая принимает эти профили.

Она также поможет Вам выйти за обычные пределы настройки баланса белого и добавить больше холодного цвета, что очень важно, если Вы хо тите добиться натурального цвета. В качестве альтернативы можно использовать Nikon View/Capture и Canon DPP.

Чтобы создать профиль, сначала преобразуйте RAW файлы в формат DNG. Это можно сделать в Lightroom в меню экспорта, или воспользоваться функцией Export to DNG после клика правой кнопкой мыши на фотографии. Преобразовать нужно сделать только для одной фотографии. Как только профиль будет создан, Вы сможете применить его к остальным RAW снимкам.

2. Калибровка профиля

Как только DNG Profile Editor будет загружен, запустите его и откройте конвертированный DNG файл через меню File ? Open DNG image. Когда откройте файл, перейдите во вкладку Color Matches.

Внизу будет секция White Balance Calibration. При помощи ползунков Вы сможете настроить баланс белого. Ползунок Temperature сдвиньте до конца влево. Красный цвет на снимке заменится на коричневый/оранжевый.

2. Экспорт профиля

Перейдите в меню File ? Export [имя камеры] profile и сохраните файл DCP в специальную папку. Для Windows 7 путь будет таким: C:\Users\Имя пользователя\AppData\Roaming\Adobe\CameraRaw\CameraProfiles. Путь для Mac: /Library/Application Support/Adobe/CameraRaw/CameraProfiles. Дайте файлу имя со смыслом, например, «[Имя камеры] 720nm IR Profile».

3. Активация профиля в Lightroom или Camera RAW

Откройте Lightroom или Camera RAW. Я буду использовать первую программу. Перейдите во вкладку Camera Calibration. Кликните на значении профиля Adobe Standard и выберите свой профиль. Перейдите во вкладку Basic и подвигайте ползунок баланса белого и увидите, насколько расширился диапазон.

4. Настройка баланса белого

Расположите ползунок Temperature по середине, а Tint немного сдвиньте в сторону пурпурного цвета. В процессе коррекции можно использовать и пипетку.

5. Настройка экспозиции

Теперь нужно повысить контрастность и усилить чёрный цвет, так как ИК фотографии могут показаться плоскими по мере удаления от камеры. Для добавления контрастности можно использовать Tone Curve. Повысьте насыщенность цвета до +20 и увидите, как сильно изменится цвет.

Сохраните файл снова в RAW формате.

6. Микширование каналов в Фотошопе

Откройте файл фотографии в Фотошопе. Здесь мы настроим каналы, уровни и проделаем тоновую коррекцию.

Сначала создадим голубое небо и жёлтую растительность. Перейдите в меню Image ? Adjustments ? Channel Mixer. Выберите канал Red для Output Channel и в секции Source Channel установите Red на 0%, а Blue на 100.

Затем выберите канал Blue для Output Channel и в секции Source Channel установите Red на 100%, а Blue на 0%. Нажмите ОК.

7. Уровни и другие коррекции

Перейдите в меню Image ? Adjustments ? Levels. Выберите канал Red и передвиньте белый ползунок на отметку 30. В результате листа приобретёт красный оттенок. Средний слайдер сдвиньте влево, а чёрный установите на отметку 20.

Выберите канал Blue и передвиньте средний ползунок вправо. Белый ползунок установите на отметку 30, а чёрный - на отметку 10. В результате Вы должно получить небо цвета воды и жёлтую листву.

Если Вы хотите поэкспериментировать с цветом, перейдите к коррекции Hue/Saturation (Image ? Adjustments ? Hue/Saturation). Передвигайте ползунок Hue и смотрите, как меняются цвета. Не забудьте про параметр Saturation, чтобы цвета хорошо сочетались друг с другом.

8. Альтернативный вариант цветовой обработки

Ещё один вариант - сделать листву белой и оставить цвет Aqua. Начнём работу с момента окончания микширования каналов. Без настройки уровней переходите к коррекции Hue/Saturation. Выберите красные тона (Reds), выберите левую пипетку и кликните на красной/коричневой/пурпурной области фотографии. Обесцветьте тона при помощи ползунка Saturation. Выберите среднюю пипетку и ещё раз кликните на той же области. Эта пипетка добавит другие цвета к выбранным в первый раз.

Это ещё не тепло, но уже не свет.
Как получить инфракрасное изображение на обычном фото-аппарате. Как сделать ИК-фильтр из подручных материалов. Специализированные камеры. Сложности при съёмке и как их обойти. Выбор объективов, камер и фильтров.
Интересные сюжеты в инфракрасном диапазоне.

На живых примерах инфракрасных снимков попробуем вместе их обработать. Получим готовые решения по обработке снимков и вместе разберём, как эти решения работают.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Представление об инфракрасном, видимом и ультрафиолетовом излучении. Различие инфракрасного и теплового излучения.


Инфракрасное излучение было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается. Тогда же было доказано, что это излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет.

Рис.1 Разложение в спектр солнечного излучения


С противоположной стороны, за фиолетовой полосой спектра находится ультрафиолетовое излучение. Оно так же невидимо, но так же немного нагревает термометр.

Дальнее инфракрасное излучение (самое длинноволновое) применяют в медицине в физиотерапии. Оно проникает под кожу и нагревает внутренние органы, не обжигая при этом кожу.

Среднее инфракрасное излучение регистрируется тепловизорами. Наиболее популярное применение тепловизоров – это поиск утечек тепла и бесконтактный контроль температуры.

Рис. 2. Тепловизор (средняя инфракрасная область)


Нас же больше всего интересует ближнее (самое коротковолновое) инфракрасное излучение. Это уже не тепловое излучение окружающих предметов комнатной температуры, но ещё не видимый свет.
В этом диапазоне частот довольно сильно излучают предметы, нагретые до заметного красного свечения. Например, гвоздь, нагретый докрасна на пламени газовой плиты в инфракрасном свете – ярко белый (рис.3) Участки более холодные (покраснение которых незаметно в видимом спектре) остаются тёмными в ИК.

Рис. 3 Ближний ИК диапазон


Именно этот диапазон излучения «работает», когда предметы нагреваются на солнце или под лампами накаливания. И это же излучение поглощают «термальные» окна автомобилей и домашние энергосберегающие стеклопакеты.
Наиболее популярное его применение – это пульты дистанционного управления (рис.4), инфракрасные камеры наблюдения с инфракрасными прожекторами подсветки.
В своё время была популярна передача данных по стандарту IrDA. Тот самый инфракрасный порт в телефонах и ноутбуках.

Рис. 4. Пульт дистанционного управления


В цифровой, как впрочем и плёночной фотографии чувствительность камеры к инфракрасному излучению нежелательна. Она приводит к искажению цвета - черные велюровые пиджаки смотрятся синими, выборочно теряется насыщенность красного.
Поэтому в современных камерах всячески борются с ней самыми разнообразными методами. Однако остаточная чувствительность всё равно есть, хоть и совсем небольшая.

Различия между чёрно-белым и инфракрасным изображением.

В интернете довольно популярны фильтры, делающие из цветной фотографии подобие инфракрасной. Однако они не могут работать корректно, потому что в цветной картинке нет информации об отражающей способности материалов в инфракрасном спектре. Грубо говоря, они не могут различить зелёный автомобиль и зелёную листву и делают все зеленые объекты в кадре белыми. Точно так же всё синее становится чёрным.
Точно так же не получается инфракрасной фотографии за простым красным фильтром неважно, плёночным или цифровым.

Как получить инфракрасное изображение

Для того чтобы получить настоящее инфракрасное изображение нужно, в простейшем случае, не пропустить в объектив видимое излучение, чтобы остаточная чувствительность камеры к инфракрасному излучению сформировала изображение.
Инфракрасные плёнки
В случае плёночной фотографии это обеспечивается применением специальных плёнок Kodak High Speed Infrared HIE, Konica Infrared 750 и самой популярной – Ilford SFX 200. Однако плёнки недостаточно, нужно ещё установить фильтр, который отсечёт видимый свет. Иначе плёнка превращается в обычную чёрно-белую панхроматическую плёнку с увеличенным зерном. Совершенно неинтересное сочетание.
Инфракрасная плёнка очень требовательна к условиям хранения – настоятельно рекомендуется хранить в холодильнике. Заряжать плёнку в фотоаппарат необходимо в полной темноте, потому что хвостик плёнки работает как световод и засвечивает до полвины плёнки. Плюс счётчики кадров в плёночных фотоаппаратах также засвечивают плёнку. Ни в коем случае нельзя засвечивать плёнку при сканировании багажа в аэропорту, а сделать это в современных мерах безопасности практически нереально – служба безопасности встаёт на дыбы и настоятельно просит показать, что в коробочке.
После экспонирования плёнку нужно проявлять по классическому чёрно-белому процессу в кромешной темноте и желательно в металлическом бачке.
Итого плёночная инфракрасная фотография это занятие скорее героическое, чем практическое.
Цифровые камеры
В цифровой фотографии всё гораздо интереснее. У большинства популярных цифровых фотоаппаратов матрица имеет остаточную чувствительность к инфракрасному диапазону достаточную, чтобы фотографировать на солнце с выдержкой в несколько секунд.

Рис. 5. Инфракрасная фотография. Canon EOS 40D, F8, 30”. Фильтр из слайдовой плёнки.


Несмотря на то, что матрица цифровой камеры чувствительна к инфракрасному излучению, их чувствительность к видимому свету в тысячи раз больше, поэтому, чтобы сделать ИК-фотографию, необходимо блокировать видимый свет специальным фильтром.
Например, камеры Canon EOS 40D и 300D на летнем солнце требовали выдержку 10…15 секунд при диафрагме F5.6 и чувствительности ISO 100. В аналогичных условиях Nikon D70 позволял работать с выдержкой в ½ … 1 секунду (что говорит о значительно более слабом ИК-фильтре в камере).
Если не бояться длительных выдержек, то вполне можно работать и в таком режиме - просто установить перед объективом инфракрасный фильтр и фотографировать со штатива.
Минус такого решения не только в длинных выдержках, но и в невозможности кадрировать картинку – в оптическом видоискателе ничего не видно. Приходится всегда пользоваться LiveView, а он есть не у всех камер.
Камеры с убирающимся инфракрасным фильтром (NightVision)
В своё время, когда цифровые зеркальные камеры ещё не набрали сегодняшней популярности, среди фотографов пользовались авторитетом камеры Sony DSC-F707/717/828.

Рис6. Камеры Sony DSC-F717/828/707


Их особенностью был режим съёмки Night Shot – в нём с матрицы камеры снимался фильтр, поглощающий инфракрасное излучение. Это позволяло установить перед объективом специальный фильтр, пропускающий только инфракрасное излучение и получить честный инфракрасный снимок с относительно короткими выдержками. Пусть и с массой ограничений автоматики, но это позволило фотографировать портреты в ИК-диапазоне.
Существует легенда, что камеры, предназначенные для астрофотографии, Canon EOS 20Da и Canon EOS 60Da приспособлены к инфракрасной съёмке, однако это не так. У них по-другому устроен Low-Pass фильтр и повышена чувствительность в красном диапазоне. Однако к инфракрасному диапазону они так же нечувствительны.

Модификация камеры для инфракрасной съёмки.

Если возможностей обычной камеры с фильтром кажется недостаточно и хочется получать инфракрасные фотографии с короткими выдержками, то можно из камеры убрать фильтр отсекающий инфракрасное излучение (Hot Mirror) и получить камеру с довольно высокой чувствительностью к ИК-диапазону. В обычном видимом свете камера нормально работать перестанет – цвета буду постоянно искажаться, а справиться с этим можно только установив фильтр Hot Mirror уже на объектив. Поэтому для съёмки в ИК-диапазоне часто используют старую камеру, которая уже отслужила своё и её не так жалко сломать.
А раз уж пошло вмешательство в камеру, то можно прямо инфракрасный фильтр поставить прямо перед матрицей. Плюсы этого решения в том, что в видоискателе снова видна картинка, а перед объективом больше не нужно ставить инфракрасный фильтр. А раз не нужен фильтр, то можно использовать объективы с различным диаметром резьбы под светофильтр.
В домашних условиях поменять фильтр перед матрицей теоретически можно, но на практике выгоднее отдать камеру на доработку специалисту – результат получится существенно качественнее, а камера не будет сломана. Опять же, знающий человек оттестирует автофокус камеры под инфракрасную съёмку и внесет поправки, если это надо.

Инфракрасные фильтры

Для съёмки в инфракрасном диапазоне практически всегда необходимо применение инфракрасных фильтров (Infrared passing filter). Фильтров, которые не пропускают видимый свет, однако прозрачны для инфракрасного излучения.
И в этом деле самый простой помощник это фотоплёнка: проявленная цветная плёнка прозрачна в ИК-диапазоне. А это значит, что засвеченная и проявленная негативная или просто проявленная слайдовая плёнка окажется чёрной в видимом диапазоне, но прозрачной в инфракрасном.
Кстати, именно ИК-прозрачностью плёнки пользуются плёночные сканеры с автоматическим удалением пыли. Они делают дополнительный снимок в ИК-диапазоне – пыль остаётся видимой на фоне прозрачной плёнки. А это готовая маска для удаления пыли.

Рис.7. Слайдовая плёнка


А раз так, то можно вырезать из подходящей плёнки кружок нужного диаметра и вложить его между защитным фильтром и объективом. Если эффекта окажется недостаточно – можно вложить несколько слоёв плёнки. Картинка немного потеряет контраст и резкость, но инфракрасная составляющая станет очевидна.

Рис.7A Слайдовая плёнка и ИК излучение


Так же можно поискать чёрные CD-R диски. Они были популярны для записи музыки, но в последнее время, со снижением популярности компакт-дисков, их стало сложно найти. Если с подобного диска смыть обложку, то получится чёрный диск, прозрачный в ИК-диапазоне.

Рис.8. Чёрный компакт-диск.


Производятся множество вариантов готовых фабричных ИК-фильтров. Наиболее популярный в России это фильтр Hoya R72. Он блокирует излучение короче 720 нанометров, а это как раз граница видимого света. Чуть менее популярен фильтр Schneider B+W 093 – он также полностью блокирует видимое излучение.
Фильтры Schneider B+W 092 и Cokin P007 блокируют видимое излучение не полностью, поэтому картинка получается только слегка окрашенной. Слайдовая фотоплёнка показывает промежуточный результат, поэтому её приходится складывать в несколько слоёв.

Объективы

Одного светофильтра для съёмки недостаточно – нужно ещё чем-то сформировать изображение. Сложность инфракрасной фотосъёмки в том, что объектив будет использоваться в ненормальном для него применении. Длина волны света хоть немного, но длиннее видимой, а это значит, что преломление света будет меньше (вспомним призму с рис.1), а это значит, что масштаб картинки изменится. Объектив станет чуть более длиннофокусным. Одновременно с этим возникает и целая россыпь проблем, которые где-то сказываются сильнее, а где – то слабее. Рассмотрим их подробнее
Фокусировка
Если объектив навести на бесконечность в видимом свете, то в ИК-диапазоне он окажется наведённым чуть ближе. Появится фронт-фокус. Но есть и хорошая сторона этой ошибки – она стабильная и достаточно просто довернуть кольцо фокусировки на определенный угол. Именно для этого на советских объективах (например на Юпитер-37А, Юпитер-9, Гелиос 44М-8 и некоторых других) стоит дополнительная красная метка R . Для правильной фокусировки в ИК нужно сначала навести резкость в видимом свете, а потом довернуть кольцо фокусировки на метку R .
У современных объективов эта метка бывает довольно редко и у зум-объективов её положение зависит от фокусного расстояния. Поэтому обычному фазовому автофокусу зеркальных камер особо доверять не стоит. Обойти проблему можно или воспользовавшись Live View и наведясь уже по контрасту или сфокусироваться вручную, контролируя резкость по экрану. Если у камеры нет Live View, то можно просто задиафрагмировать объектив посильнее и тем самым спрятать ошибку фокусировки в глубине резкости.

Рис.9 Инфракрасная метка на шкале фокусировки.


На объективах с постоянным фокусным расстоянием эту метку можно установить самостоятельно, сделав несколько снимков и выбрав положение с максимальной резкостью. Положение этой метки не зависит от дистанции фокусировки и диафрагмы, поэтому её достаточно просто один раз нарисовать и в дальнейшем пользоваться этой поправкой.
Качество просветления
Просветляющее покрытие на объективах – это несколько слоёв тонких плёнок, на границе которых луч света отражается, интерферирует с основным лучом и значительно снижает интенсивность отражения. То есть каждый слой просветления рассчитан на определенную длину волны. Однако, для инфракрасного излучения своего слоя просветления может и не быть. Поэтому некоторые объективы начинают «ловить зайцев», показывать довольно сильные блики и терять микрорезкость. А некоторые – нормально работают в инфракрасном диапазоне.
Неравномерность поля, Hot-Spot
Ещё одна проблема с инфракрасной оптикой – это переотражения на стыках линз в объективе. У особо многолинзовых объективов они иногда складываются настолько неудачно, что в середине полученного изображения появляется яркое пятно засветки – Hot-spot (рис.10). Эффект сильнее сказывается на закрытых диафрагмах, и на коротких фокусных расстояниях. Если вспомнить, что на матрице часто стоит фильтр hot-miror, отражающий инфракрасное излучение обратно в объектив, картинка получается совсем безрадостная.

Рис.10 Hot-spot


Обидно, что чаще всего этот эффект возникает у сверхширокоугольных зум-объективов. Именно тех объективов, на которые получаются самые интересные инфракрасные картинки.
Блики
Большинство объективов не предназначено для инфракрасной съёмки. Поэтому чернение внутренних поверхностей, защита от переотражений и расположение приводов внутри объектива может приводить к сильным бликам при попадании прямого солнечного света внутрь объектива. Приходится применять глубокие бленды, снимать из тени или делать несколько снимков с разным положением бликов и собирать из них панорамы-мозаики.

Рис. 11 Блики


Все перечисленные особенности в больше части зависят от типа объектива и могут незначительно меняться в зависимости от экземпляра или камеры. В Сети есть отзывы по различным объективам, таблицы с описанием пригодности и проблем, которые возникают с объективами. Найти их можно по строке поиска «объективы пригодные для инфракрасной съёмки». Но это не значит, что снимки с другими объективами не получатся совсем. Они могут потребовать какого-то дополнительного внимания – например, прикрыть их от солнца, или чуть по-другому кадрировать. Но на моём опыте не было ни одного объектива, который был бы совсем не пригоден.
Единственный случай полной непригодности к ИК-съёмке – это камеры с объективом, установленным на гиперфокальное расстояние (камеры без автофокуса). У них в ИК – диапазоне зона резкости уезжает вперёд, а поправить фокусировку просто нечем. Но такие камеры уже практически не встречаются в виде отдельных фотоаппаратов. Их можно встретить только в самых недорогих телефонах или в роли фронтальной камеры на планшетах. Не думаю, что съёмка в ИК-диапазоне на фронтальную камеру планшета может иметь хоть малейший смысл.

Практическая часть

Инфракрасная фотография хороша своей необычностью, отличием от обычной фотографии. Тем, что привычные предметы начинают выглядеть иначе. Поэтому есть смысл делать акцент на сюжетах, подчёркивающих это различие.
В ИК-диапазоне есть возможность получить картинку с очень большим контрастом. Она чем-то напоминает по контрасту чёрно-белую фотографию за насыщенно красным светофильтром К- 8Х, но картинка ещё контрастнее.В основном инфракрасная фотография хороша в пейзажах. Как городских, так и природных пейзажах. С обилием неба, листвы и простора.

Рис.12 Градиент на небе в контровом свете


Интересным получается небо. Чистое небо смотрится чёрным, поскольку оно не отражает ИК-излучение. Перистые облака в свою очередь очень хорошо отражают солнечное и рассеянное ИК-излучение, поэтому смотрятся ярко-белыми на фоне чёрного неба. А вот грозовые облака, как содержащие крупные капли дождя и большие объёмы воды, уже поглощают ИК. Поэтому грозовые облака смотрятся чёрными. Картинка получается похожей на небо, снятое сквозь плотный красный светофильтр, но гораздо контрастнее. При этом в ИК-диапазоне видны даже малейшие облачка, практически незаметные в видимом диапазоне.

Рис.13 Вода и небо в ИК


В наших широтах практически не бывает сухого и безоблачного неба. Почти всегда есть небольшая дымка в небе и поэтому небо становится очень светлым в контровом свете. Это мешает съёмке круговых панорам, но смотрится вполне естественно на широкоугольных снимках даже с солнцем в кадре, как это показано на рисунках 11 и 12.
Если же солнце спрятать, например, за деревьями, как это сделано на рисунке 12, то получается избавиться сразу от двух проблем – и от бликов от прямых солнечных лучей, и от градиентов на небе.
Очень необычно выглядит водная гладь в ИК-диапазоне (рисунок 13). Вода поглощает ИК излучение лучше видимого и выглядит в ИК диапазоне гораздо темнее, чем в видимом. Однако при этом отражающая способность чуть лучше, чем в видимом свете. Эти факторы вместе создают ощущение тёмного зеркала.
Сильно преображается в ИК-диапазоне листва деревьев и трава. Они становятся очень светлыми, практически белыми. Что, впрочем, вполне логично – листья на солнце не должны нагреваться, а в ИК поступает самое большое количество энергии Солнца. Стволы деревьев и высохшая растительность поглощает ИК-излучение и выглядит значительно темнее. Этой особенностью ИК-снимков пользуются при аэрофотосъёмке для нужд сельского хозяйства, чтобы выделить участки с погибшей растительностью.
Снимки с обилием листвы становятся похожими на зимние пейзажи. Цветы в ИК могут оказаться как светлыми, так и тёмными.
Насекомые чаще всего оказываются очень темными - поскольку они не могут поддерживать температуру своего тела, им выгодно максимально хорошо поглощать солнечное тепло.

Рис. 14 Цветы в ИК


Городской пейзаж также таит в себе неожиданные повороты – яркость пигментов красок в инфракрасном свете может сильно отличаться от видимого, а тёмные окна зданий оказаться прозрачными (или зеркальные – тёмными, как на фото 13). Всё это в сочетании с контрастным небом и белой листвой делает пейзаж необычным и поэтому интересным.
С портретами в ИК всё непросто. Губы по яркости уравниваются с кожей лица, бледнеют брови и ресницы. Кожа выглядит значительно светлее, чем в видимом диапазоне. Теряется объём. Глаза же выглядят очень тёмными на фоне посветлевшей кожи.
У людей со светлой кожей выступают кровеносные сосуды (рис. 15). Добавляет неопределенности и косметика – никогда не получается заранее угадать, тёмной или светлой в ИК окажется помада, тени или тональный крем. Окрашенные волосы тоже становятся непредсказуемыми, но чаще всего становятся тёмными. Неокрашенные же волосы светлеют.
Недорогие пластиковые темные очки чаще всего становятся прозрачными, а одежда меняет яркость. Всё это делает непредсказуемым результат при съёмке крупных портретов, однако съёмка в рост, да ещё и в сочетании с пейзажем может разнообразить фотосессию. За счёт удаленности фигур лица можно спрятать, а необычный контраст и передача тонов останется.
Если предстоит портретная инфракрасная фотосессия, то желательно перед визажем проверить все применяемые средства на адекватность – будет очень грустно, если пудра, которую визажист нанесет на лоб и щёчки внезапно окажется насыщенно чёрной в ИК-диапазоне. Если есть возможность уговорить модель не краситься перед ИК-фотосессией, то лучше так и поступить. Проще нарисовать при обработке светотеневой рисунок, чем пытаться исправить все ошибки, проявившиеся в ИК. Но если не повезло и макияж в ИК не работает, то можно ограничиться общими планами, а недостающие крупные портреты сделать в видимом свете.

Рис. 15 Портрет в ИК.

Рис.16 Channel mixer


После этого небо станет не красным, а синим, да и листва перестанет быть синей.
Остётся выровнять баланс белого, а с этим прекрасно справляется Image -> Auto Color.
Эти две операции можно записать в отдельный Action и в дальнейшем просто вызывать его, а не искать инструменты по меню.
Остаётся кривыми и масками довести картинку до идеала и при необходимости перевести в изображение в чёрно-белый режим любым удобным вам способом.

Рис. 17 Результат замены синего и красного каналов

Список литературы

Хеймен Р. Светофильтры. – М.: Мир, 1988. – 216с.
Соловьев С.М. Фотографирование в инфракрасных лучах. – М.: Искусство, 1957. – 90с.
Joe Farace Complete Guide to Digital Infrared Photography. – Lark Books, 2008. – 160c.
Cyrill Harnischmacher Digital Infrared Photography. – Rocky Nook, 2008. – 112с.
Deborah Sandidge Digital Infrared Photography (Photo Workshop). – Wiley, 2009 – 256c.
David D. Busch David Busch"s Digital Infrared Pro Secrets. - Course Technology PTR, 2007 – 288c.

Инфракрасная фотография позволяет нам увидеть мир, который недоступен нашему глазу.

Сначала эти снимки могут показаться безжизненными, но присмотревшись, в них можно увидеть другое пространство и другую реальность. Картины, полученные с помощью инфракрасной фотографии очень сюрреалистичны: жаркое лето на них превращается в холодную зиму, небо и вода становятся практически черными.

Все это - снимки из других, параллельных миров.

Прогулочные лодки на канале

Это не зима, это лето, здесь деревья и трава зеленые.

Что нужно сделать, чтобы запечатлеть этот сказочный, невидимый мир? Первым делом определить, подходит ли ваша камера для съемки в ИК-диапазоне. После чего обзавестить специализированными фильтрами и штативом. Но есть и народный метод.

Один из специалистов поделился своим опытом и несколькими работами в области инфракрасной фотографии:

«Для того, чтобы получить такие снимки, я купила б/у цифровую камеру Canon 350D и „сломала“ ее, заменив hot mirror на обычное стекло. Было очень страшно случайно сломать аппарат окончательно. Но операция прошла удачно, все работает, хотя у меня осталась пара „лишних“ шурупов после сборки.»

Впервые инфракрасное излучение, находящееся за пределами видимого диапазона, обнаружил англичанин Вильям Гершель еще в 1800-м году. Сначала инфракрасная фотография применялась астрономами, использовалась при аэрофотосъемке, а также военными и реставраторами при работе с полотнами великих живописцев.

Сегодня инфракрасная фотография - это отличный прием для тех фотографов, которые хотят запечатлеть что-то необычное и выделить свои творения из общей массы.

Инфракрасная фотография началась в пленочную эпоху, когда появились специальные пленки, способные к регистрации инфракрасного излучения. Но, поскольку в наше время цифровые зеркальные фотоаппараты гораздо популярнее пленочных и достать специальную пленку стало достаточно тяжело (к тому же, надо заметить, не каждая пленочная зеркалка позволит снимать на ИК-пленку из-за наличия внутри камеры инфракрасного датчика, который будет засвечивать кадры), в этом фотоуроке мы коснемся только аспектов инфракрасной

Для начала, чтобы понять процесс получения инфракрасного изображения, необходимо разобраться в теории. Излучение, формирующее цветное изображение, воспринимаемое человеческим глазом, имеет длину волны в пределах от 0,38 мкм (фиолетовый цвет) до 0,74 мкм (красный цвет). Пик чувствительности глаза приходится, как известно, на зеленый цвет, имеющий длину волны примерно 0,55 мкм. Диапазон волн с длиной менее 0,38 мкм называют ультрафиолетовым, а более 0,74 мкм (и до 2000 мкм) - инфракрасным. Источниками инфракрасного излучения являются все нагретые тела.

Отраженное солнечное ИК-излучение чаще всего формирует картинку на пленке или матрице фотоаппарата. Поскольку самое распространенное применение инфракрасная фотография нашла в пейзажном жанре, необходимо отметить, что лучше всего ИК-излучение отражают трава, листья и хвоя, и поэтому они на снимках получаются белыми. Все тела, поглощающие ИК-излучение, на снимках выходят темными (вода, земля, стволы и ветви деревьев).

Теперь можно перейти к практической части.

Начнем с фильтров. Для получения инфракрасного изображения необходимо использовать ИК-фильтры, обрезающие большую часть или все видимое излучение. В магазинах можно найти, например, +W 092 (пропускает излучение от 0,65 мкм и длиннее), B+W 093 (0,83 мкм и длиннее), Hoya RM-72 (0,74 мкм и длиннее), Tiffen 87 (0,78 мкм и длиннее), Cokin P007 (0,72 мкм и длиннее). Все фильтры, кроме последнего, являются обычными резьбовыми фильтрами, навинчивающимися на объектив. Фильтры французской фирмы Cokin необходимо использовать с фирменным креплением, которое состоит из кольца с резьбой под объектив и держателя фильтров. Особенность такой системы состоит в том, что для объективов с разным диаметром резьбы нужно приобретать только соответствующее кольцо, а сам фильтр и держатель остаются теми же, что получается гораздо дешевле, чем приобретение одинаковых резьбовых фильтров для каждого объектива. Кроме того, в стандартный держатель можно установить до трех фильтров с разными эффектами.

Поскольку мы рассматриваем ИК-съемку исключительно при помощи цифровых зеркальных фотокамер, нужно отметить, что у разных моделей камер разная способность к регистрации инфракрасного излучения. Сами по себе матрицы фотокамер достаточно хорошо воспринимают ИК-излучение, однако производители устанавливают перед матрицей фильтр (так называемый Hot Mirror Filter), обрезающий большую часть волн инфракрасного диапазона.

Делается это для минимизации появления нежелательных эффектов на снимках (например, муара). От того, насколько сильно фильтруется ИК-излучение, зависит возможность применения камеры для ИК-съемки. Например, камерой Nikon D70 с фильтром Cokin P007 можно снимать с рук, а для Canon EOS 350D и большинства других камер из-за длинных выдержек всегда потребуется штатив. Некоторые фотографы, увлеченные ИК-фотосъемкой, прибегают к модификации камеры, удаляя инфракрасный фильтр.

Теперь коснемся обработки снимков в Photoshop. Полученные кадры, в зависимости от установки баланса белого, будут иметь красную или фиолетовую тональность. Для получения классического черно-белого инфракрасного снимка нужно будет обесцветить снимок, например, с использованием карты градиента, предварительно настроив уровни и контраст. Также существует несколько способов получения очень эффектных цветных инфракрасных фотографий. Например, можно воспользоваться инструментом Channel Mixer, установив для начала для красного канала Red - 0%, Blue - 100%, для синего - Red - 100%, Blue - 0%, а затем путем небольших манипуляций с процентным соотношением того или иного цвета в каналах подобрать такие значения, при которых картинка будет выглядеть наиболее привлекательно.

Человеческий глаз способен воспринимать лучи в диапазоне длин волн от 380 нм до 760 нм (от фиолетового до красного). Все, что выходит за эти рамки, без специального оборудования увидеть невозможно.

Видимый свет - это лишь малая часть широкого спектра волн. Соседние области спектра - ультрафиолетовые и инфракрасные лучи. Они могут быть запечатлены на фотографии, так как преломляются линзами объектива, и изображение может быть сфокусировано на матрицу фотоаппарата. Инфракрасная фотография позволяет запечатлеть длины волн в недостижимом для нашего глаза диапазоне - от 700 до 1100 нм.

В заключение отметим основные плюсы инфракрасной фотографии: отсутствие дымки на снимках и всегда хорошо проработанное небо, отсутствие мусора, поскольку он не отражает ИК-лучи, и, конечно, важнее всего то, о чем было сказано в самом начале, - возможность увидеть необычный, неповседневный мир, в котором, помимо сказочного цвета, все движущиеся объекты исчезают или превращаются в «призраков».

Мастерство фотографа заключается не в том, чтобы красиво сфотографировать и без того красивое, а в том, чтобы показать то прекрасное, что не заметили другие. Однако в природе имеются и такие явления, которые даже самому талантливому фотографу заметить практически невозможно, но от этого они не перестают быть прекрасными. Одно из таких явлений - инфракрасная фотография, о которой пойдет речь в этом уроке.

Немного теории
Глаз даже самого продвинутого фотографа видит далеко не все солнечное излучение. Кроме видимого, есть еще и ультрафиолетовое, инфракрасное, радиоизлучение, рентгеновское и много других, образующих спектр. Странно было бы ожидать от глаза способности просмотра радиоволн. С ультрафиолетом повезло чуть больше - ультрафиолетово «смотрит» на мир наша кожа, и загорает при этом. В ультрафиолетовом излучении, используя специальный фильтр, можно снимать очень интересные пейзажи: на фотографии 1 привожу пейзаж, снятый в комбинированном ультрафиолетово-инфракрасном диапазоне.
Как видно из фотографии 2, тепловой инфракрасный участок спектра расположен за красным «концом» видимого света, ближе к микроволновому излучению. Излучение в инфракрасном диапазоне (ИК) мы часто ощущаем как тепло. Включенная электронагревательная плитка, прежде чем нагреться до того, чтобы начать светиться видимым светом, излучает тепло в инфракрасном диапазоне, которое можно ощутить рукой на расстоянии. К счастью для нас, фотографов, это излучение прекрасно «видят» и пленка, и матрица фотоаппарата! Это излучение обладает некоторыми характеристиками, схожими с излучением видимой части спектра: точно так же, как и видимый свет, преломляется в объективе, точно так же не может пройти через светозащищенный корпус камеры - это и делает возможным его регистрацию светочувствительным материалом фотоаппарата.

Для того чтобы приступить к фото съемке инфракрасных пейзажей на практике, мы должны понять, что же регистрирует наша камера: цвет, тепло, или что-то другое. И понять, какие бывают источники этого невидимого излучения. Посмотрим на фотографию 3. Как видно из фотографии, все, что на натуре было зеленым, в инфракрасном виде стало белым. Возникает вопрос: как будут выглядеть другие цвета? Я сфотографировал упаковку разноцветных фломастеров в обычном свете и через инфракрасный фильтр. Все фломастеры оказались схожего оттенка, что исключает предположение о соответствии оттенка цвету. Значит, фотоматериал реагирует на температуру? Я провел другой эксперимент: сфотографировал через инфракрасный фильтр утюг в холодном и нагретом состоянии. В результате получились два идентичных снимка, доказывающих, что в инфракрасном мире все утюги выглядят одинаково серо (поэтому фотографии не помещаю). Стало быть, фотоаппарат регистрирует не тепло и не цвет, а что-то другое.
Этим «другим» является отражающая способность поверхностей по отношению к инфракрасному излучению.

В хозяйственном магазине вы можете найти как обычную краску, так и краску, отражающую в инфракрасном диапазоне. Дом, выкрашенный такой краской, не будет летом нагреваться на солнце. Так что будьте готовы к тому, что один зеленый дом на нашей инфракрасной фотографии может выйти белым, а другой зеленый - абсолютно черным. Поверхности, отражающие ИК-излучение будут выглядеть на фотографии светлее поверхностей, поглощающих его. Чтобы не заучивать наизусть таблицы с коэффициентами отражения различных материалов в инфракрасном диапазоне, вспомним, что поверхности, поглощающие инфракрасное излучение, сильно нагреваются. Значит, тела, которые обычно нагреваются на солнце, получатся на инфракрасной фотографии темными, а те, что не нагреваются - светлыми. При этом степень яркости тела не зависит от его реальной температуры. Светло-серый асфальт и зимой, и летом, выйдет существенно темнее своего обычного оттенка, потому, что он способен нагреться на солнце до высоких температур, а листва, хвоя и трава получатся белыми, поскольку они, защищаясь от перегрева, отражают тепловое излучение.

Отдельно стоит сказать про водные поверхности, снег и небо. На инфракрасных фотографиях вода получается темнее обычного, поскольку ее поверхность плохо отражает ИК- лучи (хотя и хорошо - излучения видимого диапазона).
Чистый снег прекрасно отражает инфракрасное излучение и получится на снимке «белее белого». Небо нельзя отнести ни к поверхностям, ни к телам, а взвесь пыли и микрокапель, содержащихся в нем, почти не влияет на его инфракрасные свойства. Ясное небо на инфракрасной фотографии всегда будет очень темным, почти черным. Облака частично пропускают инфракрасное излучение и получатся не темнее и не светлее обычного, но будут выглядеть очень контрастно на практически черном небе. Определим возможные источники инфракрасного излучения. Ими могут быть все те объекты, которые излучают свет в процессе нагревания. Основным источником ИК-излучения является солнце. Ночью это могут быть лампы накаливания. Люминесцентные лампы вряд ли смогут поучаствовать в нашем «инфракрасном спектакле», поскольку их энергия уходит в основном в световой диапазон. Открытый огонь дает большое количество инфракрасных лучей.

Практика инфракрасной съемки

Инфракрасную фотосъемку можно производить как на пленочный, так и на цифровой фотоаппараты. Для наилучших результатов нам могут понадобиться штатив и достаточно дорогой инфракрасный светофильтр. Стоят такие фильтры от $50 до $200, в зависимости от полосы пропускания и размера. К примеру, фильтр Tiffen 87 диаметра 55 мм, который я использую, обошелся мне в $94. Более «слабый» фильтр Hoya RM-72 того же диаметра стоит около $60.
Вместо фильтра можно использовать незасвеченный отрезок проявленной обратимой фотопленки. Но если вы выбираете фильтр из этой таблицы, имейте в виду: чем ниже в ней расположен фильтр, тем хуже его пропускная способность, и это приводит к увеличению экспозиции. Владельцам цифровых камер не рекомендую использовать два нижних фильтра, из-за наличия встроенного в камеру собственного ИК-фильтра.
Различные цифровые фотоаппараты реагируют на инфракрасное излучение по-разному. Существенные отличия есть даже внутри линейки камер одного и того же производителя. Определить, способна ли вообще ваша камера к инфракрасному видению, нетрудно: достаточно навести на нее пульт дистанционного управления телевизора, нажать на его кнопку и посмотреть, заметно ли яркое белое пятно ИК-излучателя на мониторе. Если пятно довольно яркое, заказывайте фильтр! ИК-съемка пейзажей на «цифру» осложняется наличием в ней встроенного инфракрасного фильтра, защищающего матрицу от ощутимой доли ИК-излучения. Исходя из личных впечатлений, этот встроенный фильтр в моей камере Nikon D70, имеет полосу пропускания где-то 820 - 840 нм и короче. Матрицы фирмы Sony пропускают примерно 40% излучения, находящегося за границей 700 нм (iXBT.com). Так производители цифровых камер борются с появлением муара, и чем хуже матрица воспринимает ИК-излучение, тем это лучше для качества получающихся фотографий в обычном, видимом глазу, диапазоне. При инфракрасной съемке же приходится ловить жалкие «инфракрасные крохи» в очень узком диапазоне 780–820 нм. Это приводит к существенному увеличению значений экспозиции. Так, в зависимости от используемого фильтра и конкретной камеры, поправки на экспозицию составляют от 4 до 12 ступеней! То есть если без фильтра какая-то сцена требует выдержки 1/500 с, то с таким фильтром это уже будет целых 8 с! Все поправки на экспозицию определяются экспериментальным путем, для каждой сцены отдельно. Для зеркального Nikon D70 они составляют 9–11 ступеней, в то время как для некоторых компактных Nikon’ов - 5. Если опираться на результаты экспозамера с надетым фильтром, потребуется внесение дополнительной поправки +3EV (например, при замеренных 1 с и f8.0, надо будет выставить 8 c при том же относительном отверстии), иначе фото получится недоэкспонированным.
Цифра цифрой, но пальма первенства в инфракрасной фотографии сегодня все-таки принадлежит фотопленке. Как видно из приведенной тут таблицы, существуют не только черно-белые инфракрасные пленки, но даже и одна цветная! Речь идет о профессиональной обратимой фотопленке Kodak Ektachrome Infrared EIR. Правда, цвета на ней значительно отличаются от привычных, например, знакомая нам уже зеленая трава будет выглядеть малиново-розовой!

Инфракрасная съемка на традиционную черно-белую фотопленку дает существенно более качественные результаты чем на цифровую матрицу: «зерно» на порядок меньше, резкость выше. Из-за отсутствия в пленочном фотоаппарате встроенного ИК-фильтра на пленку попадает весь инфракрасный диапазон спектра. Экспонировать следует в соответствии с рекомендуемыми разработчиком чувствительностями. Несмотря на инфракрасную специализацию этих пленок, при съемке все равно требуется использовать фильтр, отсекающий излучение видимого диапазона. Для многих из этих пленок можно обойтись простым красным фильтром Kodak Wratten 25. Минус, по сравнению с «цифрой», в том, что инфракрасные пленки очень чувствительны к излучению. Открывать пластиковый контейнер и вставлять пленки в фотоаппарат допускается только в полной темноте. До лаборатории эти пленки тоже должны добираться в своих контейнерах. И их нельзя использовать в камерах с инфракрасным счетчиком кадров, то есть в подавляющем большинстве из выпускаемых сегодня фотоаппаратов! Нам придется достать с полки наши старые запылившиеся ФЭДы, «Зениты» и «Смены-8М», придумать, как бы приделать к ним фильтр, и только после этого приступать к съемке. Впрочем, более дешевые псевдоинфракрасные пленки не засвечиваются в зеркальных Nikon F65 и Nikon F75.
При фотографировании пейзажа через инфракрасный светофильтр у нас чаще всего нет возможности контролировать, куда навелась резкость: через плотный малиновый фильтр вообще ничего не видно, кроме солнца или ламп накаливания. Лучше отказаться от использования автофокуса (резкости либо не будет, либо она наведется куда-то не туда), и наводить резкость по шкале дальности на объективе или в окне видоискателя. Если на объектив вашего фотоаппарата нанесена красная отметка R или красная черта, то выставляйте дальность относительно этой отметки - она учитывает разницу в характеристиках преломления видимого и ИК-излучения. Следует сильно зажимать диафрагму, увеличивая тем самым глубину поля резкости, чтобы устранить возможные неточности при наведении на резкость. Диафрагмы f11 - f32 будут в самый раз, но это, конечно же, приводит к существенному увеличению выдержки, вплоть до 30 секунд даже в самый ясный день. Поэтому без штатива никак не обойтись. От этих забот избавлены только владельцы некоторых цифровых камер со специальным режимом ночной съемки в ИК-диапазоне. Там резкость можно наводить, ориентируясь на изображение в электронном видоискателе. Различные установки баланса белого при цифровой съемке не дают ничего, кроме монохромных картинок разного цвета, которые все равно придется обесцвечивать в Photoshop. Примеры приведены на фото 6. Если выставить баланс белого вручную по поверхности нейтрального цвета, получится черно-белый снимок с почти полной потерей цветовых тонов.

Творческие аспекты инфракрасной съемки
Применение какого-либо нового инструмента съемки оправдано только тогда, когда необходимо в рамках решаемой задачи. Вместо того чтобы искать объект съемки под фильтр, следует искать фильтр, наилучшим образом способный реализовать идею снимка. Во-первых, использование ИК-фильтра оправдано только для монохромной фотосъемки. Во-вторых, все предметы будут освещены только из одного источника - солнца, предметы выглядят контрастно, тени глубокие - это создает иллюзию ночного пейзажа, снятого при полной луне.
Как это использовать? Чтобы подчеркнуть мистику, сюрреализм какой-то сцены, когда мы описываем какие-то завершающие этапы развития, какие-то неясные нехорошие предчувствия. Заброшенные развалины, старое кладбище (фото 8), разруха (фотография 9). Военрук в нашей школе говорил: «Часовой должен все обойти и посмотреть, не все ли поломано». Если вокруг нас все «поломано», фильтр усилит атмосферу.
Когда в инфракрасном пейзаже присутствует ясное небо с отдельными облаками, то из-за контраста между черным небом и белыми облаками у нас чаще всего получается драматичная картина. Не исключено, что это впечатление как-то ассоциируется с похожей по распределению световых пятен атмосферой надвигающейся грозы - освещенные солнцем дома и деревья на фоне предгрозового черного неба. Пример: фото 5 «Тыквы для Хеллоуина».

Драматизм и мистика - необязательные эффекты от инфракрасного фильтра. Если в кадре не будет неба, или съемка будет проводиться в облачную погоду, можно получить фотографию с положительной энергетикой, выполненную в светлом ключе. Пример: приведенное ранее фото с водопадом.

Обработка снимков в Adobe Photoshop
То, что мы имеем на выходе из (цифровой) камеры очень далеко от совершенства: малиновое и нерезкое (фотография 10). Неудачный цвет лучше перевести в ч/б. Можно сделать это обычным путем, используя Image > Mode > Grayscale, но красный, зеленый и синий каналы будут смешаны по алгоритму, заложенному в программе. В условиях, когда из трех каналов информативен лишь один, это может привести к непредсказуемым последствиям. Лучше смешивать цветовые каналы в заданных пропорциях, для этого идем в Layer > New Adjustment Layer > Channel Mixer, жмем там OK и в полученном окне отмечаем бокс Monochrome, варьируя бегунками «вес» каждого цветового канала. Рекомендую поочередно просмотреть содержимое всех трех цветовых каналов полученного изображения. Не исключено, что совсем не красный будет играть в вашем снимке первую роль. Например, изображения с моей камеры содержат более высокую резкость в зеленом канале. Но полностью избавляться от информации, содержащейся в других каналах, нецелесообразно, это приведет к повышенным шумам.

Все остальные манипуляции со снимком, такие как повышение резкости, яркости или контраста, ничем не отличаются от тех, что применяются к любому другому монохромному пейзажу.
Вот, собственно, и все, что хотелось рассказать про инфракрасную фотосъемку пейзажа. Надеюсь, что статья послужит стимулом для новых творческих экспериментов. Желаю удачи!

Из Вьетнама создал небольшой ажиотаж в азиатских интернетах и периодически мне приходят вопросы, что это такое и как я вообще это сделал. Потому сегодня я вам расскажу про инфракрасную фотографию - штука довольно бесполезная, но интересная. Да и давно обещал, а карточный долг - это дело чести!

Обработка
Сразу хочу сказать что все снимки сделаны с использованием фильтра на 700 нм, потому если вы снимали с другим фильтром, цвета у вас могут сильно отличаться.

Предположим, что у вас есть набор снимков и теперь вам надо всё это превратить в красивую фотографию. Скорее всего обработку вы будете делать в Lightroom или ACR и потому открыв RAW-файл , вы скорее всего увидите примерно следующую картину:

Дело в том, что конвертор не может корректно отобразить фотографию из-за узкого диапазона значений ББ. Для того чтобы это поправить нам надо создать профиль для камеры через программу DNG Profile Editor 1.0.4 . Скачав и запустив её, выбираем File -> Open DNG (файл должен быть сконвертирован в DNG), затем идем в закладку Color Matrices и в пункте White Balance Calibration выставляем -100 у температуры.

Дальше File -> Export Nikon D7000 (так у меня было) profile. Сохраняем всё в папку "C:\ProgramData\Adobe\CameraRaw\CameraPr ofiles\Camera\Nikon D7000", сами понимаете надо выбрать вашу камеру. Дальше открываем файл в Lightroom , идем в закладку Camera Calibration и выбираем только что созданный профиль и вуаля:

Есть небольшой нюанс, почему-то в моем случае профиль никак не хотел появляться, потому мне пришлось переписывать уже существующий. Причем файл имел одно имя, а сам профиль другой. Не очень понял этого шаманства, но работает..

Дальше файл я сразу же утащил в Photoshop , но если есть желание, никто не запрещает поколдовать в Lightroom . В Photoshop создаем новый корректирующий слой Channel Mixer и меняем красный и синий канал местами. Для удобства можете сохранить это как Preset, чтобы пользоваться в будущем.

Получается уже что-то похожее на правду, ну и дальше устраиваем небольшие шаманства чтобы все привести более вменяемому результату:

Слой Selective Color . White -> Blacks -77%
- Слой Hue/Saturation . Master Hue + 15
- Слой Curves , где смеcтил точку черного на 19 пунктов.
- Слой Curves в режиме Soft Light с прозрачность 30%.

Итоговый результат:

Ну в общем то и все. Честно признаюсь я не совсем силен в мат. части вопроса и на просторах инета можно найти множество умных талмудов на эту тему. Но методом проб и ошибок какие то знания в этой области нашел. Также есть еще отдельная интересная тема Портреты в ИК-фотографии, но я про неё расскажу в следующий раз, на данный момент просто нет нужных примеров. Ну и скоро будут посты на тему постпродакшена Timelapse видео и большуший пост по поводу Travel видео, не теряйтесь:))


© 2024
reaestate.ru - Недвижимость - юридический справочник