22.06.2019

Гидрид бериллия. Химические свойства бериллия. Физические свойства бериллия


Бериллий был открыт в 1798 году Л. Вокленом в виде берилловой земли (оксида ВеО), когда этот французский химик выяснял общие особенности химического состава драгоценных камней берилла и изумруда. Металлический бериллий был получен в 1828 г. Ф. Велером в Германии и независимо от него А. Бюсси во Франции. Однако из-за примесей его не удавалось сплавить. Лишь в 1898 г. французский химик П. Лебо, подвергнув электролизу двойной фторид калия и бериллия, получил достаточно чистые металлические кристаллы бериллия. Интересно, что из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли "глюциний" (от греческого glykys - сладкий). Из-за сходства свойств бериллия и алюминия считалось, что это трехвалентный металл с атомной массой 13,5. Эту ошибку исправил Д.И. Менделеев, который, исходя из закономерности изменения свойств элементов в периоде, определил бериллию место во второй группе.

Нахождение в природе, получение:

Бериллий относится к редким элементам, его содержание в земной коре 2,6·10 -4 % по массе. В морской воде содержится до 6·10 -7 мг/л бериллия. Основные природные минералы, содержащие бериллий: берилл Be 3 Al 2 (SiO 3) 6 , фенакит Be 2 SiO 4 , бертрандит Be 4 Si 2 O 8 ·H 2 O и гельвин (Mn,Fe,Zn) 4 3 S. Окрашенные примесями катионов других металлов прозрачные разновидности берилла - драгоценные камни, например, зеленый изумруд, голубой аквамарин, гелиодер, воробьевит и другие. В настоящее время их научились синтезировать искусственно.
В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия:
BeCl 2 +2K=Be+2KCl.
В настоящее время бериллий получают,восстанавливая его фторид магнием:
BeF 2 +Mg=Be+MgF 2
либо электролизом расплава смеси хлоридов бериллия и натрия. Исходные соли бериллия выделяют при переработке бериллиевой руды.

Физические свойства:

Металлический бериллий - твердый, хрупкий металл серого цвета. На воздухе бериллий, как и алюминий, покрыт оксидной пленкой, придающей ему матовый цвет. Температура плавления 1278°C, температура кипения около 2470°C, плотность 1,816 кг/м 3 . До температуры 1277°C устойчив a -Ве (гексагональная решетка типа магния (Mg), параметры а = 0,22855 нм, с = 0,35833 нм), при температурах, предшествующих плавлению металла (1277-1288°C) - b -Ве с кубической решеткой.

Химические свойства:

Наличие оксидной пленки предохраняет металл от дальнейшего разрушения и обусловливает его невысокую химическую активность при комнатной температуре. При нагревании бериллий сгорает на воздухе с образованием оксида BeO, реагирует с серой и азотом. С галогенами бериллий реагирует при обычной температуре или при слабом нагревании. Все эти реакции сопровождаются выделением большого количества теплоты, так как прочность кристаллических решеток возникающих соединений (BeO, BeS, Be 3 N 2 , ВеCl 2 и др.) довольно велика.
Благодаря образованию на поверхности прочной пленки бериллий не реагирует с водой, хотя находится в ряду стандартных потенциалов значительно левее водорода. Как и алюминий, бериллий реагирует с кислотами и растворами щелочей:
Be + 2HCl = BeCl 2 + H 2 ,
Be + 2NaOH + 2H 2 O = Na 2 + H 2 .
Интересно, что бериллий хорошо растворяется в концентрированных растворах фторидов:
Be + 4NH 4 F + 2H 2 O = (NH 4) 2 + 2NH 3 *H 2 O + H 2
Причина - образование прочных фторидных комплексов.

Важнейшие соединения:

Оксид бериллия , BeO встречается в природе в виде редкого минерала бромеллита. Получают термическим разложением сульфата или гидроксида бериллия выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата выше 600°С.
Непрокаленный оксид бериллия гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С - лишь 0,18%. Оксид бериллия, прокаленный не выше 500°С, легко взаимодействует с кислотами, труднее - с растворами щелочей, а прокаленный выше 727° С - лишь со фтороводородной кислотой, горячей концентрированной серной кислотой и расплавами щелочей. Устойчив к воздействию расплавленных лития, натрия, калия, никеля и железа.
Оксид бериллия обладает очень высокой теплопроводностью. Считается одним из лучших огнеупорных материалов, используется для изготовления тиглей и других изделий
Гидроксид бериллия , Be(OH) 2 - полимерное соединение, нерастворимое в воде. Оно проявляет амфотерные свойства: Be(OH) 2 + 2КOH = К 2 , Be(OH) 2 + 2HCl = BeCl 2 + 2H 2 O.
Действием на гидроксид бериллия Be(OH) 2 растворами карбоновых кислот или при упаривании растворов их бериллиевых солей получают оксисоли бериллия, например, оксиацетат Be 4 O(CH 3 COO) 6 .
Галогениды бериллия , бесцв. крист. вещества, расплываются на воздухе, поглощая влагу. Для получения безводного хлорида используется реакция 2BeO + CCl 4 = 2BeCl 2 + CO 2
Подобно хлориду алюминия BeCl 2 является катализатором в реакции Фриделя – Крафтса. В растворах подвергается гидролизу
...
Бериллаты , в концентрированных растворах и расплавах щелочей присутствуют бериллаты состава M 2 BeO 2 , M 3 BeO 4 , в разбавленных растворах гидроксобериллаты M 2 . Легко гидролизуются до гидроксида бериллия.
...
Гидрид бериллия , BeH 2 - полимерное вещество, его получают реакцией: BeCl 2 + 2LiH = BeH 2 + 2LiCl
Карбид бериллия , Be 2 С - образуется при взаимодействии бериллия с углеродом. Подобно карбиду алюминия гидролизуется водой с образованием метана.

Применение:

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твердость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. Бериллиевые бронзы (Cu и 3-6% Be) – материал для пружин c большой устойчивостью к механической усталости и совершенно не дающих искр при механических ударах.
Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу).
В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов.
В смесях с некоторыми a -радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и a -частиц возникают нейтроны: 9 Ве(a ,n) 12 C.
Физиологическое действие: в живых организмах бериллий, по-видимому, не несет никакой биологической функции, однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Летучие и растворимые соединения бериллия, а также пыль, содержащая бериллий и его соединения, очень токсичны, канцерогенны (ПДК 0,001 мг/м 3).

Рудакова Анна Валерьевна
ХФ ТюмГУ, 561 группа.

Источники:
Бериллий // Википедия. Дата обновления: 23.01.2019. URL: https://ru.wikipedia.org/?oldid=97664788 (дата обращения: 04.02.2019).

Изобретение относится к ракетному топливу для ракетного двигателя. Ракетное топливо содержит горючее и окислитель. Варианты ракетного топлива имеют следующий состав при следующем соотношении компонентов в мас.%: боргидрид бериллия - 34,63±10%, динитрамид аммония - 55,50±10%, гидрид бериллия - 9,87±5%, или боргидрид бериллия - 23,78±10%, динитрамид аммония - 76,22±10%, или боргидрид лития - 35,85±10%, динитрамид аммония - 51,06±10%, гидрид лития - 13,09±5%, или боргидрид алюминия - 23,66±10%, динитрамид аммония - 57,76±10%, гидрид алюминия - 18,58±5%, или декаборан - 39,64±10%, динитрамид аммония - 60,36±10%. Другие варианты ракетного топлива получены с использованием реакции с аммиаком (мас.%): боргидрида бериллия - 44,61±10%, динитрамида аммония - 35,75±10%, аммиака - 19,63±5%. Все эти реакции возможны также с другим окислителем - шестиокисью азота N 3 O 6 . Двигатель с таким топливом из газов выделяет только чистый водород. 11 н.п. ф-лы.

Изобретение относится к ракетным двигателям твердого топлива и гибридным.

Известны ракетные двигатели, см., например, «Бескорпусный двигатель с самоподачей», пат. № 2431052. Все существующие химические ракетные двигатели используют принцип высокотемпературного нагрева газа или газопылевого рабочего тела (пыль - это твердые фракции разложившегося твердого ракетного топлива). Делается это для того, чтобы повысить скорость истечения рабочего тела из реактивного сопла. Эта скорость определяется, во-первых, скоростью звука в газе и, во-вторых, степенью расширения газа в расширяющемся сверхзвуковом реактивном сопле и достигает в лучших двигателях 4000 м/с. Причем детали двигателя работают в очень напряженном тепловом режиме, даже с учетом их охлаждения.

Между тем скорость звука в водороде даже при нормальных температуре и давлении 1330 м/с. А если еще и немного повысить температуру водорода, то скорость звука в нем и скорость истечения его из сопла резко возрастут. Например, водород с температурой всего 650°С (это ниже температуры его воспламенения) будет иметь скорость звука 2360 м/с и сможет в реактивном сопле разогнаться сам и разогнать пылевые частицы до скорости около 4300 м/с. То есть получится «холодный ракетный двигатель», в котором из-за адиабатического расширения газ на выходе из реактивного сопла может иметь приблизительно температуру окружающей среды.

На этом и основана идея данного изобретения. Цель изобретения - повышение скорости реактивной струи и удельного импульса ракетного двигателя. Для этого двигатель должен вырабатывать чистый водород и твердые вещества. Подходящей химической реакцией для этого может быть тройная реакция боргидрида бериллия, гидрида бериллия и динитрамида аммония:

Возможны промежуточные реакции: образование воды, реакция ее при таких температурах с бериллием и с бором, образование аммиака, реакция его или азота при таких температурах с оксидом бора и получение нитрида бора. Соотношение компонентов: боргидрида бериллия - 34,63±10%, динитрамида аммония - 55,50±10%, гидрида бериллия - 9,87±5%.

Возможна реакция с окислением бора:

Соотношение компонентов: боргидрида бериллия - 23,78±10%, динитрамида аммония - 76,22±10%.

Если траектория взлета проходит над населенными местами, то можно заменить бериллий и его токсичные соединения на литий или алюминий и их соединения.

Хотя структура LiBH4, скорее всего, будет Li2(BH4)2, поэтому предыдущую реакцию можно записать так:

В любом случае соотношение компонентов: боргидрида лития - 35,85±10%, динитрамида аммония - 51,06±10%, гидрида лития - 13,09±5%.

Или возможна такая же реакция с алюминием:

Соотношение компонентов: боргидрида алюминия - 23,66±10%, динитрамида аммония - 57,76±10%, гидрида алюминия - 18,58±5%. Структура боргидрида алюминия возможна Al2(ВН4)6.

Сравнительно малотоксичным будет двигатель:

Соотношение компоненов: декаборана - 39,64±10%, динитрамида аммония -60,36±10%.

Возможна реакция в гибридном двигателе с повышенным удельным выделением водорода:

Соотношение реакции: боргидрида бериллия - 44,61±10%, динитрамида аммония - 35,75±10%, аммиака - 19,63±5%.

Возможна и реакция с полным или частичным окислением получившегося водорода.

Теоретически открыто устойчивое соединение N3O6 (далее «шестиокись азота»), с получением его на практике возможны реакции с ним:

Соотношение компонентов: боргидрида бериллия 29,61±10%, шестиокиси азота - 70,39±10%.

Или такая же тройная реакция с использованием имеющегося азота:

Соотношение компонентов: боргидрида бериллия 26,02±10%, шестиокиси азота - 61,86±10%, бора - 12,12±5%.

Эта же реакция даст больше водорода, если вместо бора добавлять тетраборан:

Соотношение компонентов: боргидрида бериллия 24,91±10%, шестиокиси азота - 59,35±10%, декаборана - 15,74±5%.

Или возможна другая тройная реакция, похожая на реакцию 1:

Соотношение компонентов: боргидрида бериллия - 23,26±10%, шестиокиси азота - 56,17±10%, гидрида бериллия - 20,20±10%.

Интересна реакция в гибридном двигателе с повышенным выделением водорода:

Соотношение компонентов: боргидрида бериллия - 44,34±10%, шестиокиси азота - 26,39±10%, аммиака - 29,27±10%.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид бериллия - 34,63±10%, динитрамид аммония - 55,50±10%, гидрид бериллия - 9,87±5%.

2. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид бериллия - 23,78±10%, динитрамид аммония - 76,22±10%.

3. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид лития - 35,85±10%, динитрамид аммония - 51,06±10%, гидрид лития - 13,09±5%.

4. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид алюминия - 23,66±10%, динитрамид аммония - 57,76±10%, гидрид алюминия - 18,58±5%.

5. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: декаборан - 39,64±10%, динитрамид аммония - 60,36±10%.

6. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид бериллия - 44,61±10%, динитрамид аммония - 35,75±10%, аммиак - 19,63±5%,

7. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид бериллия 29,61±10%, шестиокись азота - 70,39±10%.

8. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид бериллия 26,02±10%, шестиокись азота - 61,86±10%, бор - 12,12±5%.

9. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид бериллия 24,91±10%, шестиокись азота - 59,35±10%, декаборан - 15,74±5%.

10. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид бериллия - 23,26±10%, шестиокись азота - 56,17±10%, гидрид бериллия - 20,20±10%.

11. Ракетное топливо, содержащее горючее и окислитель, отличающееся тем, что имеет топливо со следующим соотношением компонентов в мас.%: боргидрид бериллия - 44,34±10%, шестиокись азота - 26,39±10%, аммиак - 29,27±10%.

Изобретение относится к ракетным топливам. Предложены варианты ракетного топлива, включающие боргидрид и гидрид бериллия, лития, алюминия, лития-алюминия или кремния или тетраборан и азотсодержащий окислитель: нитрат аммония, динитрамид аммония, нитрат бора, нитрат бериллия, пятиокись азота, шестиокись азота, азотную кислоту. Техническим результатом является повышение скорости реактивной струи за счет повышения энергетики реакции и за счет увеличения выделяющихся газов с малым средним молекулярным весом, в частности, водорода. 25 н.п. ф-лы.

Изобретение относится к ракетным топливам (далее РТ), хотя бы один из компонентов которых (горючее, окислитель или однокомпонентное топливо) содержит связанный азот. Известны РТ, содержащие бор или некоторые соединения бора, см. пат. № US 2328519. Однако в них бор используется только как горючее.

Скорость истечения газов зависит от скорости звука в сжатом газе, который образуется в объеме камеры сгорания (у твердотопливных двигателей таковой является весь объем двигателя). В той смеси газов, которая образуется при горении большинства РТ, и при той температуре и давлении скорость звука обычно не превышает 1300 м/с, и для ее повышения требуется расширяющееся реактивное сопло.

Между тем скорость звука в водороде даже при нормальных температуре и давлении 1330 м/с. А если еще и немного повысить температуру водорода, скорость звука резко возрастет. Например, водород с температурой всего 650°С (это ниже температуры его воспламенения) будет иметь скорость звука 2360 м/с, и сможет разогнать осколки до скорости 2200 м/с. То есть получится «холодный двигатель», в результате которого после адиабатического расширения газ может иметь приблизительно температуру окружающей среды.

Кроме того, большинство РТ содержат связанный азот, который при горении выделяется и в свободном виде. Его можно заставить экзотермически реагировать с целью повышения тепловыделения взрыва с мелкодисперсным (желательно, наноразмеров) бором или его горючими соединениями.

На этом и основана идея данного изобретения. Задача и технический результат изобретения - повышение скорости реактивной струи. Не только за счет повышения энергетики реакции, но и за счет получения выделяющихся газов с малым средним молекулярным весом - водорода и воды. Свободный азот и, особенно, «тяжелый» CO2 нежелательны.

ПРИМЕР. В любое РТ добавляются бораны и/или боргидриды. При температуре 800-1200°С происходит реакция образования нитрида бора

То есть на единицу добавленного бора получается добавочное тепловыделение 23,37 кДж/г.Такая добавка улучшит тепловыделение любого РТ.

Понятно, что количество атомов бора и азота должно относиться как 1:1+-20% (не считая тех случаев, когда бор используется и в качестве основного горючего).

Реакция образования нитрида бора лучше идет в присутствии восстановителей - угля, сажи, графита, графена, водорода. В некоторых реакциях происходит выделение углерода, поэтому в добавочных количествах восстановителя они не нуждается, в других случаях рекомендуется добавлять мелкодисперсного угля, графита, сажи или графена в количестве 0,0001-1% (оптимально 0,01-0,1%). Присутствие водорода в продуктах реакции уменьшает или даже исключает потребность в углероде.

СОЕДИНЕНИЯ БЕРИЛЛИЯ.

Применение гидридов бериллия и алюминия известно в ракетной технике, но они применяются в других комбинациях и с другим количеством окислителя. Рассмотрим реакции наиболее энергетичных гидрида и боргидрида бериллия с другими окислителями (кроме нитрата аммония в прототипе, см. реакция \6\ в прототипе). При горении в кислороде бериллий дает наибольшую теплоту реакции = 23,91 кДж/г-смеси

Соотношение компонентов: динитрамида аммония (далее ДНА) - 55,50%+-15%, боргидрида бериллия - 34,63%+-10%, гидрида бериллия - 9,87%+-5% (здесь и далее -масс. %).

При герметизации полости взрывного устройства возможна следующая реакция с пятиокисью азота

Соотношение компонентов: боргидрид бериллия - 20,88%+-10%, пятиокись азота - 56,6%+-15%, гидрид бериллия - 23,12%+-10%. Тепловыделение достаточно высокое - 17,76 кДж/г.

Возможна реакция боргидрида бериллия с нитратом бора

Соотношение компонентов: боргидрид бериллия - 37,1%+-15%, нитрат бора 62,9%+-20%.

Или лучше добавить к предыдущей реакции гидрид бериллия

Соотношение компонентов: боргидрид бериллия - 17,20%+-15%, нитрат бора - 58,30%+-20%, гидрид бериллия - 24,50%+-10%.

Возможна реакция боргидрида бериллия и гидрида бериллия с нитратом бериллия

Соотношение компонентов: боргидрид бериллия - 17,93%+-15%, нитрат бериллия - 61,63%+-20%, гидрид бериллия - 20,44%+-10%.

Возможна реакция с нитратом аммония

Соотношение компонентов: боргидрид бериллия - 27,48%+-15%, нитрат аммония 56,85%+-20%, гидрид бериллия - 15,67%+-10%.

В гибридном двигателе возможна реакция с азотной кислотой

Соотношение компонентов: боргидрид бериллия - 17,6%+-10%, азотная кислота - 57,32%+-15%, гидрид бериллия - 25,08%+-10%. Тепловыделение 16,64 кДж/г. (полезно растворить в кислоте пятиокись азота).

Соотношение компонентов: боргидрида бериллия - 23,26%+-10%, шестиокиси азота - 56,17%+-10%, гидрида бериллия - 20,20%+-10%.

Может пойти побочная реакция образования воды из водорода, но при таких температурах гидрид бериллия или сам бериллий будут реагировать с водяными парами и разлагать воду обратно до водорода.

Может пойти побочная реакция образования оксида бора, но в присутствии вышеназванных восстановителей он будет реагировать с азотом с образованием нитрида бора.

СОЕДИНЕНИЯ ЛИТИЯ-АЛЮМИНИЯ.

Более дешевой химической реакцией может быть также тройная (участвуют три компонента) двуэнергетическая (идут две энергетических реакции: кислород-металл и азот-бор) реакция лития или алюминия и их соединений с участием бора литий обладает вторым после бериллия тепловыделением на единицу смеси - 19,93 кДж/г, а алюминий - на четвертом месте - 16,43 кдж/г-смеси. Но алюминий обладает другими достоинствами - он недефицитен и нетоксичен. Литий трудно разделяется с алюминием, и поэтому наиболее распространено их комплексное соединение.

Соотношение компонентов: боргидрид лития - 35,85%+-10%, динитрамид аммония - 51,06%+-15%, гидрид лития - 13,09%+-5% (здесь и далее - масс. %).

Или возможна такая же реакция с алюминием

Соотношение компонентов: боргидрид алюминия - 23.66%+-10%, динитрамид аммония - 57,76%+-15%, гидрид алюминия - 18,58%+-5%.

Реакция с боргидридом и гидридом лития-алюминия является суммой этих двух реакций (и далее также следует иметь ввиду, что реакция с литием-алюминием эквивалентна двум реакциям - с литием и с алюминием)

Соотношение компонентов: боргидрид лития-алюминия - 29,75%+-10%, динитрамид аммония - 54,41%+-15%, гидрид лития-алюминия - 15,84%+-5%.

Возможна реакция с более доступным нитратом аммония безводным

Соотношение компонентов: боргидрид лития-алюминия - 28,33%+-10%, нитрат аммония - 48,62%+-15%, гидрид лития-алюминия - 23,05%+-10%.

Высокоэнергетична реакция с пятиокисью азота

Соотношение компонентов: боргидрид лития-алюминия - 20,23%+-10%, пятиокись азота - 46,85%+-15%, гидрид лития-алюминия - 32,92%+-10%.

Соотношение компонентов: боргидрид лития-алюминия - 11,80%+-10%, нитрат бора - 49,80%+-15%, гидрид лития-алюминия - 38,40%+-10%.

Соотношение компонентов: боргидрид лития-алюминия - 16,99%+-10%, нитрат бериллия - 46,85%+-15%, гидрид лития-алюминия - 34,56%+-10%.

Соотношение компонентов: боргидрид лития-алюминия - 17,44%+-10%, азотная кислота - 47,10%+-15%, гидрид лития-алюминия - 35,46%+-10%.

С недавно открытым веществом N3O6 возможна реакция

Соотношение компонентов: боргидрид лития-алюминия - 23,85%+-10%, шестиокись азота - 47,05%+-15%, гидрид лития-алюминия - 29,10%+-10%.

СОЕДИНЕНИЯ КРЕМНИЯ.

Кремний находится на пятом месте по тепловыделению реакции с кислородом - 15,06 кДж/г-смеси. Но он обладает другим достоинством - это один из наиболее широко распространенных в природе элементов, и его оксид совершенно не токсичен.

Могут использоваться боргидрид кремния и силан с разными окислителями. Так как моносилан - это газ, и храниться он может только в герметичной и достаточно прочной таре, то применяться он может только в гибридных двигателях

Соотношение компонентов: боргидрид кремния - 28,05%+-10%, нитрат аммония безводного - 51,35%+-15%, силан - 20,6+-10%.

Соотношение компонентов: боргидрид кремния - 28,05%+-10%, динитрамид аммония - 51,35%+-15%, силан - 20,6+-10%.

Соотношение компонентов: боргидрид кремния - 20,73%+-10%, пятиокись азота - 48,82%+-15%, силан - 30,45+-10%.

Соотношение компонентов: боргидрид кремния - 11,85%+-10%, нитрат бора - 53,34%+-15%, силан - 34,81%+-10%.

Соотношение компонентов: боргидрид кремния - 18,14%+-10%, нитрат бериллия - 55,20%+-15%, силан - 26,66+-10%.

Соотношение компонентов: боргидрид кремния - 17,49%+-10%, азотная кислота - 50,40%+-15%, силан - 32,11+-10%.

С недавно открытым веществом N3O6 возможна реакция

Соотношение компонентов: боргидрид кремния - 23,77%+-10%, шестиокись азота - 50,03%+-15%, силан - 26,20+-10%.

СОЕДИНЕНИЯ БОРА.

Бор находится на третьем месте по тепловыделению реакции с кислородом - 18,02 кДж/г-смеси.

Бор может выступать и в качестве горючего, и в качестве источника второй энергетической реакции с азотом. Наиболее перспективен тетраборан - он содержит чуть меньше водорода, чем диборан (2,5 атома водорода на 1 атом бора вместо 3), зато легко сжижается (+18°C), и имеет примерно в 4 раза большую плотность в сжиженном состоянии, чем диборан в сверхкритическом состоянии. Еще более удобен в обращении декаборан - он твердый, но он содержит мало водорода - всего 1,4 атома водорода на 1 атом бора.

Рассмотрим реакции тетраборана с разными окислителями (он может только в гибридных двигателях)

Соотношение компонентов: тетраборан - 39,98%+-15%, нитрат аммония - 60,02%+-15%.

Соотношение компонентов: тетраборан - 39,69%+-15%, пятиокись азота - 60,31%+-15%.

Соотношение компонентов: тетраборан - 39,69%+-15%, нитрат бора - 60,31%+-15%.

Соотношение компонентов: тетраборан - 34,83%+-15%, нитрат бериллия - 65,17%+-15%.

Соотношение компонентов: тетраборан - 41,74%+-15%, ДНА - 58,26%+-15%.

Соотношение компонентов: тетраборан - 38,83%+-15%, азотная кислота - 61,17%+-15%.

Соотношение компонентов: тетраборан - 40,34%+-15%, шестиокись азота - 59,66%+-15%.

Все перечисленные водородовыделяющие взрывчатые вещества значительно повысят обороноспособность нашей страны.

1. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид бериллия - 27,48±15 мас.%, нитрат аммония 56,85±20 мас.%, гидрид бериллия - 15,67±10 мас. %.

2. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид бериллия - 23,26±10 мас.%, шестиокись азота - 56,17±10 мас.%, гидрид бериллия - 20,20±10 мас.%.

3. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид лития - 35,85±10 мас.%, динитрамид аммония - 51,06±15 мас.%, гидрид лития - 13,09±5 мас.%.

4. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид алюминия - 23.66±10 мас.%, динитрамид аммония - 57,76±15 мас.%, гидрид алюминия - 18,58±5 мас.%.

5. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид лития-алюминия - 29,75±10 мас.%, динитрамид аммония - 54,41±15 мас.%, гидрид лития-алюминия - 15,84±5 мас.%.

6. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид лития-алюминия - 28,33±10 мас.%, нитрат аммония - 48,62±15 мас.%, гидрид лития-алюминия - 23,05±10 мас.%.

7. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид лития-алюминия - 20,23±10 мас.%, пятиокись азота - 46,85±15 мас.%, гидрид лития-алюминия - 32,92±10 мас.%.

8. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид лития-алюминия - 11,80±10 мас.%, нитрат бора - 49,80±15 мас.%, гидрид лития-алюминия - 38,40±10 мас.%.

9. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид лития-алюминия - 16,99±10 мас.%, нитрат бериллия - 46,85±15 мас.%, гидрид лития-алюминия - 34,56±10 мас.%.

10. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид лития-алюминия - 17,44±10 мас.%, азотная кислота - 47,10±15 мас.%, гидрид лития-алюминия - 35,46±10 мас.%.

11. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид лития-алюминия - 23,85±10 мас.%, шестиокись азота - 47,05±15 мас.%, гидрид лития-алюминия - 29,10±10 мас.%.

12. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид кремния - 28,05±10 мас.%, нитрат аммония безводный - 51,35±15 мас.%, силан - 20,6±10 мас.%.

13. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид кремния - 28,05±10 мас.%, динитрамид аммония - 51,35±15 мас.%, силан - 20,6±10 мас.%.

14. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид кремния - 20,73±10 мас.%, пятиокись азота - 48,82±15 мас.%, силан - 30,45±10 мас.%.

15. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид кремния - 11,85±10 мас.%, нитрат бора - 53,34±15 мас.%, силан - 4,81±10 мас.%.

16. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид кремния - 18,14±10 мас.%, нитрат бериллия - 55,20±15 мас.%, силан - 26,66±10 мас.%.

17. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид кремния - 17,49±10 мас.%, азотная кислота - 50,40±15 мас.%, силан - 32,11±10 мас.%.

18. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: боргидрид кремния - 23,77±10 мас.%, шестиокись азота - 50,03±15 мас.%, силан - 26,20±10 мас.%.

19. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: тетраборан - 39,98±15 мас.%, нитрат аммония - 60,02±15 мас.%.

20. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: тетраборан - 39,69±15 мас.%, пятиокись азота - 60,31±15 мас.%.

21. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: тетраборан - 39,69±15 мас.%, нитрат бора - 60,31±15 мас.%.

22. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: тетраборан - 34,83±15 мас.%, нитрат бериллия - 65,17±15 мас.%.

23. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: тетраборан - 41,74±15 мас.%, ДНА - 58,26±15 мас.%.

24. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: тетраборан - 38,83±15 мас.%, азотная кислота - 61,17±15 мас.%.

25. Ракетное топливо, отличающееся тем, что имеет следующее соотношение компонентов: тетраборан - 40,34±15 мас.%, шестиокись азота - 59,66±15 мас.%.

Похожие патенты:

Изобретение относится к метательным взрывчатым веществам, а именно смесевым порохам. Изобретения основано на том, что кислород реагирует только с металлом боргибрида (согласно ряду напряжений), а бор экзотермически реагирует с азотом и увеличивает энергетику реакции.

47 > .. >> Следующая

При добавлении в твердые топлива металлов или гидридов металлов (табл. 4.27) удельная тяга существенно увеличивается. Если в качестве окислителя использован перхлорат аммония, то удельная тяга может возрасти примерно на 17 сек при добавлении алюминия, на 27 сек при добавлении гидрида алюминия, на 39 сек при добавлении бериллия и на 57 сек при добавлении гидрида бериллия. Добавление алюмогидрида лития не вызывает существенного увеличения удельной тяги по сравнению с добавлением алюминия. Если в качестве окислителя использован перхлорат нитрония, то при добавлении алюминия удельная тяга возрастает только на 3 сек, при добавлении гидрида алюминия на 19 сек, при добавлении алюмогидрида лития на 13 сек, при добавлении бериллия на 12 сек и при добавлении гидрида бериллия на 35 сек. Перхлорат лития обеспечивает высокую удельную тягу только в сочетании с гидридом бериллия.

При сравнении этих данных выявляются две тенденции. Если считать перхлорат нитрония высокоэффективным окислителем, перхлорат аммония - стандартным и перхлорат лития - малоэффективным окислителем, то разница удельных тяг топлив на основе этих окислителей уменьшается при применении более высокоэффективных добавок. Так, разница удельных тяг топлив на основе перхлоратов нитрония и лития при отсутствии добавок составляет 45 сек и только 13 сек - при добавлении гидрида бериллия. Другая тенденция касается состава топлива. При добавлении гидридов металлов удельная тяга топлива на основе

4 ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАКЕТНЫХ ТОПЛИВ

Таблица 4 27

Г орючее-связующее, (содержание, вес. %) Добавка (созержанне, вес. %) Окислитель Улельнал тяга, сек Температура газов в камере сгорания, 0K Плотность,. г см3
С Н2(15) А1(19) NH4ClO4 264,1 3179 1,74
СН2(20) А 1(15) NO2ClO4 281,5 3894 1,76
СН2(15) Al (20) LiClO4 251,0 3726 1,97
CH2(H) Al (16) KClO4 228,9 3492 2,04
Двухосновное (45) А1 (20) NH4ClO4 263,5 3760 1,80
СНо(15) А1Н3(34) NH4ClO4 274,2 2546 1,53
СН2(15) А1Н"3(25) NO2ClO4 298,3 3783 1,66
СН2(15) А!Н3(25) LiClO4 269,0 3119 1,72
Двухосновное(40) А!Н3(28) NH4ClO4 285,2 3417 1,61
СН2(17,5) LiAiH4(25) NH4ClO4 265,0 2334 1,32
СН2(17,5) LiA Н4(20) NO9ClO4 292,4 3507 1,45
СН2(15) LiAiH4(20) LiClO4 237,4 2639 1,54
СН2(15) Ве(12) NH4ClO4 285,6 3172 1,66
СН2(25) Be(B) NO2CO4 291,2 3270 1,61
СН2(15) Ве(17,5) LiClO4 264,9 3453 1,85
Двухосновное(40) Ве(16,8) NH4ClO4 279,3 4071 1,72
СН2(20) ВеН2(25) NH4ClO4 304,0 2644 1,14
СН2(17,5) ВеН2(17,5) NO2ClO4 313,8 3208 1,34
СН2(20) ВеН2(27) LiClO4 300,8 2732 1,21
Двухосновное(50) ВеН2(20) NH4ClO4 313,8 3154 1,28

перхлората аммония, содержащего некоторое количество водорода, возрастает на меньшую величину, чем в случае топлива на основе перхлората нитрония, не содержащего водорода. При добавлении гидрида алюминия перхлорат нитрония реализует свои возможности и добавление водорода способствует увеличению удельной тяги до 290-300 сек\ при добавлении гидрида бериллия удельная тяга возрастает до 314 сек.

Можно также ожидать, что горючие-связующие, содержащие невосстановленные окислительные элементы, обеспечивают более высокие удельные тяги в сочетании с гидридами металлов. Вследствие этого связи N-О, N-F или О-F в горючем-связующем способствуют увеличению удельной тяги в отличие от связей

4 ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАКЕТНЫХ ТОПЛИВ 137

С-О или С-F. Типичным представителем этой категории горючих является двухосновное горючее-связующее, в нитрогруппах которого имеются связи N-О. Удельная тяга топлива на основе этого горючего с добавкой гидрида алюминия на 11 сек выше удельной тяги топлива на основе углеводородного горючего-связующего (окислитель NH4ClO4), а с добавкой гидрида бериллия- на 8 сек. Если в качестве добавок вместо гидридов используются соответствующие металлы, то топливо на основе углеводородного горючего-связующего имеет большую удельную тягу.

Соотношение элементов топлива меняется в зависимости от теплоты сгорания металлов. При отсутствии металла продукты сгорания содержат H2O, CO и некоторое количество CO2. Максимальная удельная тяга достигается при добавлении алюминия или гидрида алюминия, когда продуктами сгорания являются Al2O3, CO, H2 и некоторое количество H2O. Таким образом, добавочная реализуемая энергия позволяет использовать часть водорода для получения продуктов сгорания низкого молекулярного веса (а не сжигать его для получения тепловой энергии). При добавлении бериллия или гидрида бериллия продуктами сгорания будут BeO, CO и H2. Более высокая теплота сгорания бериллия дает возможность использовать весь водород в качестве разбавителя.

4.13. ПЛОТНОСТЬ ТОПЛИВА

Желательно, чтобы топливо было как можно более плотным. Это приводит к уменьшению веса топливных баков или корпуса ракетного двигателя твердого топлива. Благодаря высокой плотности топлива увеличивается отношение начальной и конечной масс ракеты и, следовательно, приращение скорости полета ракеты, которое определяется уравнением (1.27). Массовая доля топлива также определяется конструкцией ракеты, поэтому на ранних этапах проектирования этот параметр трудно оценить. Следовательно, для предварительных оценок желательны упрощенные методы. Иногда используется эмпирическое выражение «плотностной удельной тяги»


© 2024
reaestate.ru - Недвижимость - юридический справочник