29.09.2019

Движение тела с переменной массой. Уравнение Мещерского. Формула Циолковского. Уравнение Циолковского: описание, история открытия, применение


Подробности Категория: Человек и небо Опубликовано 10.06.2014 18:24 Просмотров: 8198

«Земля – колыбель человечества. Но нельзя вечно жить в колыбели». Это высказывание принадлежит русскому изобретателю, выдающемуся учёному-самоучке Константину Эдуардовичу Циолковскому.

Циолковского называют отцом космонавтики. Ещё в 1883 г. в своей рукописи "Свободное пространство" он высказывал мысль о том, что в космосе можно передвигаться с помощью ракеты. Но теорию ракетного движения он обосновал гораздо позже. В 1903 г. была опубликована первая часть труда учёного, который назывался «Исследование мировых пространств реактивными приборами». В этом труде он привёл доказательства того, что ракета является аппаратом, способным совершать космический полёт.

Научными разработками в области воздухоплавания и аэродинамики Циолковский занимался и ранее. В 1892 г. в работе «Теория и опыт аэростата» он описал управляемый дирижабль с оболочкой из металла. В те времена оболочки делали из прорезиненной ткани. Понятно, что дирижабль Циолковского мог служить гораздо дольше. Кроме того, он был оснащён системой подогрева газа и имел переменный объём. А это позволяло сохранять постоянную подъёмную силу при различных температурах окружающей среды и на различной высоте.

В 1894 г. учёный опубликовал статью «Аэростат или птицеподобная (авиационная) летательная машина», в которой описал летательный аппарат тяжелее воздуха – аэроплан с металлическим каркасом. В статье были даны расчёты и чертежи цельнометаллического самолёта с одним изогнутым крылом. К сожалению, в то время идеи Циолковского не были поддержаны в научном мире.

Многие поколения учёных мечтали о полётах за пределы Земли – на Луну, Марс и другие планеты. Но как будет двигаться летательный аппарат в космосе, где абсолютная пустота и нет опоры, оттолкнувшись от которой он получит ускорение? Циолковский предложил использовать для этой цели ракету, приводимую в движение реактивным двигателем.

Как устроен ракетный двигатель

В космическом пространстве нет ни твёрдой, ни жидкой, ни газообразной опоры. И ускорение космическому кораблю может сообщить только реактивная сила . Для появления этой силы внешние воздействия не нужны. Она возникает, когда продукты сгорания вытекают из сопла ракеты с некоторой скоростью относительно самой ракеты.

Основная часть ракетного двигателя – камера сгорания . В ней и происходит процесс сгорания топлива. В одной из стенок этой камеры есть отверстие, называемое реактивным соплом . Вот через это отверстие и выбрасываются газы, образуемые при сгорании.

Продукты сгорания топлива в двигателях называют рабочим телом. Вообще, рабочее тело – это некое условное материальное тело, расширяющееся при нагреве и сжимающееся при охлаждении. В каждом типе двигателя оно разное. Так, в тепловых двигателях, рабочее тело – это продукты сгорания бензина, дизельного топлива и др. В ракетных – продукты сгорания ракетного топлива. А топливо для ракетных двигателей также бывает разным. И в зависимости от его вида различают ядерные ракетные двигатели, электрические ракетные двигатели, химические ракетные двигатели.

В ядерном ракетном двигателе рабочее тело нагревается за счёт энергии, которая выделяется при ядерных реакциях.

В электрических ракетных двигателях источником энергии служит электрическая энергия.

Химические ракетные двигатели , в которых топливо (горючее и окислитель) состоит из веществ, находящихся в твёрдом состоянии, называются твёрдотопливными (РДТТ). А в жидкостных ракетных двигателях (ЖРД) компоненты топлива хранятся в жидком агрегатном состоянии.

Циолковский предложил использовать для полётов в космосе жидкостные ракетные двигатели. Такие двигатели преобразуют химическую энергию топлива в кинетическую энергию выбрасываемой из сопла струи. В камерах сгорания этих двигателей происходит экзотермическая (с выделением теплоты) реакция горючего и окислителя. В результате этой реакции продукты сгорания нагреваются, расширяются и, разгоняясь в сопле, истекают из двигателя с огромной скоростью. А ракета, согласно закону сохранения импульса, получает ускорение, направленное в другую сторону.

И в наше время для полётов в космосе применяют ракетные двигатели. Конечно, существуют и другие проекты двигателей, например, космический лифт или солнечный парус , но все они находятся в стадии разработки.

Первая ракета Циолковского

Люди придумали ракеты очень давно.

В конце III века до нашей эры человечество изобрело порох. А сила, возникающая при взрыве пороха, могла приводить в движение различные предметы. И пиротехнические средства стали использовать для фейерверков. Позже были созданы пушки и мушкеты. Их снаряды могли летать на вполне приличное расстояние. Но ракетами их всё-таки назвать нельзя было, так как они не имели собственного топлива. Но с их появлением возникли предпосылки для создания настоящих ракет.

Китайские «огненные стрелы», к которым прикреплялись трубки из плотной бумаги, заполненные горючим веществом и открытые с заднего конца, вылетавшие из лука при поджигании заряда, уже можно было считать ракетами.

В конце XIX века ракеты уже были на вооружении в артиллерии. Циолковский же предложил ракету – летательный аппарат, который передвигается в космическом пространстве за счёт действия реактивной тяги.

Как же выглядела первая ракета Циолковского? Это был летательный аппарат в виде металлической продолговатой камеры (формы наименьшего сопротивления), внутри которого располагались 2 отсека: жилой и двигательный. Жилой отсек предназначался для экипажа. А в двигательном отсеке находился жидкостный ракетный двигатель, работающий на водородно-кислородном топливе. Жидкий водород служил топливом, а жидкий кислород – окислителем, необходимым для горения водорода. Газы, образующиеся при сгорании топлива, имели очень высокую температуру и текли по трубам, расширяющимся к концу. Разредившись и охладившись, они вырывались из раструбов с огромной относительно ракеты скоростью. На выбрасываемую массу действовала сила со стороны ракеты. А согласно третьему закону Ньютона (закон равенства действия и противодействия) такая же сила, называемая реактивной, действовала и на ракету со стороны выбрасываемой массы. Эта сила сообщала ракете ускорение.

Формула Циолковского

Формула для вычисления скорости ракеты, обнаружена в математических трудах Циолковского, написанных им в 1897 г.

,

V - скорость летательного аппарата после выработки всего топлива:

I – отношение тяги двигателя к расходу топлива в секунду (величина, называемая удельным импульсом ракетного двигателя). Для теплового ракетного двигателя u = I.

M 1 – масса летательного аппарата в начальный момент полёта. Она включает массу самой конструкции ракеты, массу топлива и массу полезной нагрузки (например, космического корабля, который выводится ракетой на орбиту).

M 2 – масса летательного аппарата в конечный момент полёта. Так как топливо к этому времени уже израсходовано, то это будет масса конструкции + масса полезной нагрузки.

С помощью формулы Циолковского можно рассчитать количество топлива, необходимое ракете для получения заданной скорости.

Из формулы Циолковского получаем отношение начальной массы ракеты к её конечной массе:

Обозначим:

M o – масса полезного груза

M k - масса конструкции ракеты

M t - масса топлива

Масса конструкции зависит от массы топлива. Чем больше топлива необходимо ракете, тем больше резервуаров потребуется для его транспортировки, а значит, большей будет и масса конструкции.

Отношение этих масс выражается формулой:

где k – коэффициент, который показывает количество топлива на единицу массы конструкции ракеты.

Этот коэффициент может быть разным в зависимости от того, какие материалы использованы в конструкции ракеты. Чем легче и прочнее эти материалы, тем меньшим будет коэффициент, и легче конструкция. Кроме того, он зависит и от плотности топлива. Чем плотнее топливо, тем меньшие по объёмы ёмкости потребуются для его транспортировки, и тем выше значение k .

Подставив в формулу Циолковского выражения начальной и конечной массы ракеты через массы конструкции, груза и топлива, получим:

Из этого выражения следует, что величина массы топлива равна:

Зная значение удельного импульса топлива и массу полезного груза, можно рассчитать скорость ракеты.

Эта формула имеет смысл только в том случае, если

или

Если это условие не выполняется, ракета никогда не сможет достигнуть заданной скорости.

Многоступенчатая ракета

Чтобы преодолеть притяжение Земли, летательный аппарат должен развить горизонтальную скорость около 7,9 км/сек. Эта скорость называется первой космической скоростью . Получив такую скорость, он будет двигаться вокруг Земли по концентрической орбите и станет искусственным спутником Земли. При меньшей скорости он упадёт на Землю.

Чтобы покинуть орбиту Земли, аппарат должен обладать скоростью 11,2 км/сек. Эта скорость называется второй космической скоростью . А космический аппарат, получивший такую скорость, становится спутником Солнца.

Каждое небесное тело имеет свои значения космических скоростей. Например, для Солнца вторая космическая скорость равна 617,7 км/сек.

Вес топлива, необходимого для получения даже первой космической скорости, по расчётам превышает вес самой ракеты. А ведь кроме топлива, она должна нести ещё и полезный груз: экипаж, приборы и т.п. Понятно, что такую ракету построить невозможно. Но Циолковский нашёл решение и этой задачи. А что если механически скрепить вместе несколько ракет? Учёный предложил направлять в космическое пространство целый «ракетный поезд». Каждая ракета в таком «поезде» называлась ступенью, а сам «поезд» - многоступенчатой ракетой.

Двигатель первой, самой большой ступени, включается при старте. Она получает ускорение и сообщает его всем остальным ступеням, которые по отношению к ней являются полезной нагрузкой. Когда всё топливо выгорит, эта ступень отделяется от ракеты и сообщает свою скорость второй ступени. Далее таким же образом разгоняется вторая ступень, которая также отделится от ракеты, когда закончится топливо. И так будет до тех пор, пока не закончится топливо в двигателе последней ступени ракеты. Тогда и эта ступень отделится от космического корабля, а он займёт свое место на космической орбите.

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии - свободной энциклопедии

Однако первыми уравнение движения тела с переменной массой решили английские исследователи У. Мур, а также П. Г. Тэйт и У. Дж. Стил из Кембриджского университета соответственно в 1810-1811 гг. и в 1856 году.

Формула Циолковского может быть получена путём интегрирования дифференциального уравнения Мещерского для материальной точки переменной массы :

texvc не найден; См. math/README - справку по настройке.): m \cdot \frac {d\vec{V}}{dt}+ \vec{u} \cdot \frac {dm}{dt}=0 , в котором Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): m - масса точки; Невозможно разобрать выражение (Выполняемый файл texvc - скорость точки; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): u - относительная скорость, с которой движется отделяющаяся от точки часть её массы. Для ракетного двигателя эта величина и составляет его удельный импульс Невозможно разобрать выражение (Выполняемый файл texvc Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta v_{g}\ = \int\limits_{0}^{t} g(t)\cdot \cos(\gamma (t))\,dt ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): g(t) и Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \gamma (t) - местное ускорение гравитации и угол между вектором силы тяги двигателя и местным вектором гравитации, соответственно, являющиеся функциями времени по программе полёта. Как видно из таблицы 1, наибольшая часть этих потерь приходится на участок полёта первой ступени. Это объясняется тем, что на этом участке траектория отклоняется от вертикали в меньшей степени, чем на участках последующих ступеней, и значение Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \cos(\gamma (t)) близко к максимальному значению - 1.

Аэродинамические потери вызваны сопротивлением воздушной среды при движении ракеты в ней и рассчитываются по формуле:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta v_{a}\ = \int\limits_{0}^{t} \frac {A(t)}{m(t)} \,dt ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A(t) - сила лобового аэродинамического сопротивления, а Невозможно разобрать выражение (Выполняемый файл texvc - текущая масса ракеты. Основные потери от сопротивления воздуха также приходятся на участок работы 1-й ступени ракеты, так как этот участок проходит в нижних, наиболее плотных слоях атмосферы.

Корабль должен быть выведен на орбиту со строго определёнными параметрами, для этого система управления на активном участке полёта разворачивает ракету по определённой программе, при этом направление тяги двигателя отклоняется от текущего направления движения ракеты, а это влечёт за собой потери скорости на управление, которые рассчитываются по формуле:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta v_{u}\ = \int\limits_{0}^{t} \frac {F(t)}{m(t)} \cdot(1 - \cos(\alpha (t))) \,dt ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): F(t) - текущая сила тяги двигателя, Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): m(t) - текущая масса ракеты, а Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \alpha (t) - угол между векторами тяги и скорости ракеты. Наибольшая часть потерь на управление ракеты приходится на участок полёта 2-й ступени, поскольку именно на этом участке происходит переход от вертикального полёта в горизонтальный, и вектор тяги двигателя в наибольшей степени отклоняется по направлению от вектора скорости ракеты.

Использование формулы Циолковского при проектировании ракет

Выведенная в конце XIХ века, формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Путём несложных преобразований формулы получаем следующее уравнение:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac {M_{1}} {M_{2}} = e^{V/I} (1)

Это уравнение дает отношение начальной массы ракеты к её конечной массе при заданных значениях конечной скорости ракеты и удельного импульса . Введём следующие обозначения:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{0} - масса полезного груза; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{k} - масса конструкции ракеты; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{t} - масса топлива.

Масса конструкции ракеты в большом диапазоне значений зависит от массы топлива почти линейно: чем больше запас топлива, тем больше размеры и масса ёмкостей для его хранения, больше масса несущих элементов конструкции, мощнее (следовательно, массивнее) двигательная установка. Выразим эту зависимость в виде:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{k}=\frac {M_{t}} {k} , (2) где Невозможно разобрать выражение (Выполняемый файл texvc - коэффициент, показывающий, какое количество топлива приходится на единицу массы конструкции. При рациональном конструировании этот коэффициент в первую очередь зависит от характеристик (плотности и прочности) конструкционных материалов, используемых в производстве ракеты. Чем прочнее и легче используемые материалы, тем выше значение коэффициента Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k . Этот коэффициент зависит также от усреднённой плотности топлива (для менее плотного топлива требуются ёмкости бо́льшего размера и массы, что ведёт к снижению значения Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k ).

Уравнение (1) может быть записано в виде:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac {M_{0}+ M_{t}+M_{t}/k} {M_{0}+M_{t}/k}=e^{V/I} ,

что путём элементарных преобразований приводится к виду:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{t}=\frac {M_{0} \cdot k \cdot (e^{V/I}-1)}{k+1- e^{V/I}} (3)

Эта форма уравнения Циолковского позволяет рассчитать массу топлива, необходимого для достижения одноступенчатой ракетой заданной характеристической скорости, при заданных массе полезного груза, значении удельного импульса и значении коэффициента Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k .

Разумеется, эта формула имеет смысл, только когда значение, получающееся при подстановке исходных данных, положительно. Поскольку экспонента для положительного аргумента всегда больше 1, числитель формулы всегда положителен, следовательно, положительным должен быть и знаменатель этой формулы: Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k+1- e^{V/I}>0 , иначе говоря, Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k>e^{V/I}-1 (4)

Это неравенство является критерием достижимости одноступенчатой ракетой заданной скорости Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): V при заданных значениях удельного импульса Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): I и коэффициента Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k . Если неравенство не выполняется, заданная скорость не может быть достигнута ни при каких затратах топлива: с увеличением количества топлива будет возрастать и масса конструкции ракеты и отношение начальной массы ракеты к конечной никогда не достигнет значения, требуемого формулой Циолковского для достижения заданной скорости.

Пример расчёта массы ракеты

Требуется вывести искусственный спутник Земли массой Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{0}=10 т на круговую орбиту высотой 250 км. Располагаемый двигатель имеет удельный импульс Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): I=2900 м/c . Коэффициент Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k=9 - это значит, что масса конструкции составляет 10 % от массы заправленной ракеты (ступени). Определим массу ракеты-носителя .

Первая космическая скорость для выбранной орбиты составляет 7759,4 м/с, к которой добавляются предполагаемые потери от гравитации 600 м/c (это, как можно видеть, меньше, чем потери, приведённые в таблице 1, но и орбита, которую предстоит достичь - вдвое ниже), характеристическая скорость, таким образом, составит Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): V=8359,4 м/c (остальными потерями в первом приближении можно пренебречь). При таких параметрах величина Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): e^{V/I}=17,86 . Неравенство (4), очевидно, не выполняется, следовательно, одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно .

Расчёт для двуступенчатой ракеты. Разделим пополам характеристическую скорость, что составит характеристическую скорость для каждой из ступеней двуступенчатой ракеты. Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): V=4179,7 м/c . На этот раз Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): e^{V/I}=4,23 , что удовлетворяет критерию достижимости (4), и, подставляя в формулы (3) и (2) значения, для 2-й ступени получаем: Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{t2}=\frac {10 \cdot 9 \cdot (4,23-1)}{9+1- 4,23}=50,3 т ; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{k2}=\frac {50,3} {9}=5,6 т ; полная масса 2-й ступени составляет Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 55,9 т . Для 1-й ступени к массе полезной нагрузки добавляется полная масса 2-й ступени, и после соответствующей подстановки получаем: Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{t1}=\frac {(10+55,9) \cdot 9 \cdot (4,23-1)}{9+1- 4,23}=331,3 т ; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{k1}=\frac {331,3} {9}=36,8 т ; полная масса первой ступени составляет Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 368,1 т ; общая масса двухступенчатой ракеты с полезным грузом составит Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 10+55,9+368,1=434 т . Аналогичным образом выполняются расчёты для бо́льшего количества ступеней. В результате получаем: -Стартовая масса трёхступенчатой ракеты составит Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 323,1 т . -Четырёхступенчатой - Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 294,2 т . -Пятиступенчатой - Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 281 т .

На этом примере видно, как оправдывается многоступенчатость в ракетостроении - при той же конечной скорости ракета с бо́льшим числом ступеней имеет меньшую массу.

Следует отметить, что эти результаты получены в предположении, что коэффициент конструктивного совершенства ракеты Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k остаётся постоянным, независимо от количества ступеней. Более тщательное рассмотрение показывает, что это - сильное упрощение. Ступени соединяются между собой специальными секциями - переходниками - несущими конструкциями, каждая из которых должна выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки , которую испытывает ракета на всех участках полёта, на которых переходник входит в состав ракеты. С увеличением числа ступеней их суммарная масса уменьшается, в то время как количество и суммарная масса переходников возрастают, что ведёт к снижению коэффициента Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k , а, вместе с ним, и положительного эффекта многоступенчатости . В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

Такого рода расчёты выполняются не только на первом этапе проектирования - при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции, формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке , и т. д., чтобы контролировать достижение ракетой заданной скорости.

Обобщённая формула Циолковского

Для ракеты, летящей со скоростью, близкой к скорости света, справедлива обобщённая формула Циолковского:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac{M_{2}}{M_{1}}=\left (\frac{1-\frac{V}{c}}{1+\frac{V}{c}} \right)^{\frac{c}{2I}} ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): c - скорость света . Для фотонной ракеты Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): I=c и формула имеет вид:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac{M_{1}}{M_{2}}=\sqrt {\frac{1+\frac{V}{c}}{1-\frac{V}{c}}} ,

Скорость фотонной ракеты вычисляется по формуле:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac{V}{c} = \frac{1- \left(\frac{M_{2}}{M_{1}} \right)^{2}}{1+ \left(\frac{M_{2}}{M_{1}} \right)^{2}} ,

См. также

Напишите отзыв о статье "Формула Циолковского"

Примечания

Литература

  • Левантовский В. И. Механика космического полета в элементарном изложении. - М .: Наука, 1980. - 512 с.

Отрывок, характеризующий Формула Циолковского

– Они использовали «непрогляд», верно ведь? – удивлённо спросила я. – А разве это умели делать все Катары?..
– Нет, Изидора. Ты забыла, что с ними были Совершенные, – ответил Север и спокойно продолжил дальше.
Дойдя до вершины, люди остановились. В свете луны руины Монтсегюра выглядели зловеще и непривычно. Будто каждый камень, пропитанный кровью и болью погибших Катар, призывал к мести вновь пришедших... И хотя вокруг стояла мёртвая тишина, людям казалось, что они всё ещё слышат предсмертные крики своих родных и друзей, сгоравших в пламени ужасающего «очистительного» папского костра. Монтсегюр возвышался над ними грозный и... никому ненужный, будто раненый зверь, брошенный умирать в одиночку...
Стены замка всё ещё помнили Светодара и Магдалину, детский смех Белояра и златовласой Весты... Замок помнил чудесные годы Катар, заполненные радостью и любовью. Помнил добрых и светлых людей, приходивших сюда под его защиту. Теперь этого больше не было. Стены стояли голыми и чужими, будто улетела вместе с душами сожжённых Катар и большая, добрая душа Монтсегюра...

Катары смотрели на знакомые звёзды – отсюда они казались такими большими и близкими!.. И знали – очень скоро эти звёзды станут их новым Домом. А звёзды глядели сверху на своих потерянных детей и ласково улыбались, готовясь принять их одинокие души.
Наутро все Катары собрались в огромной, низкой пещере, которая находилась прямо над их любимой – «кафедральной»... Там когда-то давно учила ЗНАНИЮ Золотая Мария... Там собирались новые Совершенные... Там рождался, рос и крепчал Светлый и Добрый Мир Катар.
И теперь, когда они вернулись сюда лишь как «осколки» этого чудесного мира, им хотелось быть ближе к прошлому, которое вернуть было уже невозможно... Каждому из присутствовавших Совершенные тихо дарили Очищение (consolementum), ласково возлагая свои волшебные руки на их уставшие, поникшие головы. Пока все «уходящие» не были, наконец-то, готовы.
В полном молчании люди поочерёдно ложились прямо на каменный пол, скрещивая на груди худые руки, и совершенно спокойно закрывали глаза, будто всего лишь собирались ко сну... Матери прижимали к себе детей, не желая с ними расставаться. Ещё через мгновение вся огромная зала превратилась в тихую усыпальницу уснувших навеки пяти сотен хороших людей... Катар. Верных и Светлых последователей Радомира и Магдалины.
Их души дружно улетели туда, где ждали их гордые, смелые «братья». Где мир был ласковым и добрым. Где не надо было больше бояться, что по чьей-то злой, кровожадной воле тебе перережут горло или попросту швырнут в «очистительный» папский костёр.
Сердце сжала острая боль... Слёзы горячими ручьями текли по щекам, но я их даже не замечала. Светлые, красивые и чистые люди ушли из жизни... по собственному желанию. Ушли, чтобы не сдаваться убийцам. Чтобы уйти так, как они сами этого хотели. Чтобы не влачить убогую, скитальческую жизнь в своей же гордой и родной земле – Окситании.
– Зачем они это сделали, Север? Почему не боролись?..
– Боролись – с чем, Изидора? Их бой был полностью проигран. Они просто выбрали, КАК они хотели уйти.
– Но ведь они ушли самоубийством!.. А разве это не карается кармой? Разве это не заставило их и там, в том другом мире, так же страдать?
– Нет, Изидора... Они ведь просто «ушли», выводя из физического тела свои души. А это ведь самый натуральный процесс. Они не применяли насилия. Они просто «ушли».
С глубокой грустью я смотрела на эту страшную усыпальницу, в холодной, совершенной тишине которой время от времени звенели падающие капли. Это природа начинала потихоньку создавать свой вечный саван – дань умершим... Так, через годы, капля за каплей, каждое тело постепенно превратится в каменную гробницу, не позволяя никому глумиться над усопшими...
– Нашла ли когда-либо эту усыпальницу церковь? – тихо спросила я.
– Да, Изидора. Слуги Дьявола, с помощью собак, нашли эту пещеру. Но даже они не посмели трогать то, что так гостеприимно приняла в свои объятия природа. Они не посмели зажигать там свой «очистительный», «священный» огонь, так как, видимо, чувствовали, что эту работу уже давно сделал за них кто-то другой... С той поры зовётся это место – Пещера Мёртвых. Туда и намного позже, в разные годы приходили умирать Катары и Рыцари Храма, там прятались гонимые церковью их последователи. Даже сейчас ты ещё можешь увидеть старые надписи, оставленные там руками приютившихся когда-то людей... Самые разные имена дружно переплетаются там с загадочными знаками Совершенных... Там славный Домом Фуа, гонимые гордые Тренкавели... Там грусть и безнадёжность, соприкасаются с отчаянной надеждой...

И ещё... Природа веками создаёт там свою каменную «память» печальным событиям и людям, глубоко затронувшим её большое любящее сердце... У самого входа в Пещеру Мёртвых стоит статуя мудрого филина, столетиями охраняющего покой усопших...

– Скажи, Север, Катары ведь верили в Христа, не так ли? – грустно спросила я.
Север искренне удивился.
– Нет, Изидора, это неправда. Катары не «верили» в Христа, они обращались к нему, говорили с ним. Он был их Учителем. Но не Богом. Слепо верить можно только лишь в Бога. Хотя я так до сих пор и не понял, как может быть нужна человеку слепая вера? Это церковь в очередной раз переврала смысл чужого учения... Катары верили в ЗНАНИЕ. В честность и помощь другим, менее удачливым людям. Они верили в Добро и Любовь. Но никогда не верили в одного человека. Они любили и уважали Радомира. И обожали учившую их Золотую Марию. Но никогда не делали из них Бога или Богиню. Они были для них символами Ума и Чести, Знания и Любви. Но они всё же были ЛЮДЬМИ, правда, полностью дарившими себя другим.
Смотри, Изидора, как глупо церковники перевирали даже собственные свои теории... Они утверждали, что Катары не верили в Христа-человека. Что Катары, якобы, верили в его космическую Божественную сущность, которая не была материальной. И в то же время, говорит церковь, Катары признавали Марию Магдалину супругою Христа, и принимали её детей. Тогда, каким же образом у нематериального существа могли рождаться дети?.. Не принимая во внимание, конечно же, чушь про «непорочное» зачатие Марии?.. Нет, Изидора, ничего правдивого не осталось об учении Катар, к сожалению... Всё, что люди знают, полностью извращено «святейшей» церковью, чтобы показать это учение глупым и ничего не стоящим. А ведь Катары учили тому, чему учили наши предки. Чему учим мы. Но для церковников именно это и являлось самым опасным. Они не могли допустить, чтобы люди узнали правду. Церковь обязана была уничтожить даже малейшие воспоминания о Катарах, иначе, как могла бы она объяснить то, что с ними творила?.. После зверского и поголовного уничтожения целого народа, КАК бы она объяснила своим верующим, зачем и кому нужно было такое страшное преступление? Вот поэтому и не осталось ничего от учения Катар... А спустя столетия, думаю, будет и того хуже.
– А как насчёт Иоанна? Я где-то прочла, что якобы Катары «верили» в Иоанна? И даже, как святыню, хранили его рукописи... Является ли что-то из этого правдой?
– Только лишь то, что они, и правда, глубоко чтили Иоанна, несмотря на то, что никогда не встречали его. – Север улыбнулся. – Ну и ещё то, что, после смерти Радомира и Магдалины, у Катар действительно остались настоящие «Откровения» Христа и дневники Иоанна, которые во что бы то ни стало пыталась найти и уничтожить Римская церковь. Слуги Папы вовсю старались доискаться, где же проклятые Катары прятали своё опаснейшее сокровище?!. Ибо, появись всё это открыто – и история католической церкви потерпела бы полное поражение. Но, как бы ни старались церковные ищейки, счастье так и не улыбнулось им... Ничего так и не удалось найти, кроме как нескольких рукописей очевидцев.
Вот почему единственной возможностью для церкви как-то спасти свою репутацию в случае с Катарами и было лишь извратить их веру и учение так сильно, чтобы уже никто на свете не мог отличить правду от лжи… Как они легко это сделали с жизнью Радомира и Магдалины.
Ещё церковь утверждала, что Катары поклонялись Иоанну даже более, чем самому Иисусу Радомиру. Только вот под Иоанном они подразумевали «своего» Иоанна, с его фальшивыми христианскими евангелиями и такими же фальшивыми рукописями... Настоящего же Иоанна Катары, и правда, чтили, но он, как ты знаешь, не имел ничего общего с церковным Иоанном-«крестителем».
– Ты знаешь, Север, у меня складывается впечатление, что церковь переврала и уничтожила ВСЮ мировую историю. Зачем это было нужно?
– Чтобы не разрешить человеку мыслить, Изидора. Чтобы сделать из людей послушных и ничтожных рабов, которых по своему усмотрению «прощали» или наказывали «святейшие». Ибо, если человек узнал бы правду о своём прошлом, он был бы человеком ГОРДЫМ за себя и своих Предков и никогда не надел бы рабский ошейник. Без ПРАВДЫ же из свободных и сильных люди становились «рабами божьими», и уже не пытались вспомнить, кто они есть на самом деле. Таково настоящее, Изидора... И, честно говоря, оно не оставляет слишком светлых надежд на изменение.
Север был очень тихим и печальным. Видимо, наблюдая людскую слабость и жестокость столько столетий, и видя, как гибнут сильнейшие, его сердце было отравлено горечью и неверием в скорую победу Знания и Света... А мне так хотелось крикнуть ему, что я всё же верю, что люди скоро проснутся!.. Несмотря на злобу и боль, несмотря на предательства и слабость, я верю, что Земля, наконец, не выдержит того, что творят с её детьми. И очнётся... Но я понимала, что не смогу убедить его, так как сама должна буду скоро погибнуть, борясь за это же самое пробуждение.
Но я не жалела... Моя жизнь была всего лишь песчинкой в бескрайнем море страданий. И я должна была лишь бороться до конца, каким бы страшным он ни был. Так как даже капли воды, падая постоянно, в силах продолбить когда-нибудь самый крепкий камень. Так и ЗЛО: если бы люди дробили его даже по крупинке, оно когда-нибудь рухнуло бы, пусть даже не при этой их жизни. Но они вернулись бы снова на свою Землю и увидели бы – это ведь ОНИ помогли ей выстоять!.. Это ОНИ помогли ей стать Светлой и Верной. Знаю, Север сказал бы, что человек ещё не умеет жить для будущего... И знаю – пока это было правдой. Но именно это по моему пониманию и останавливало многих от собственных решений. Так как люди слишком привыкли думать и действовать, «как все», не выделяясь и не встревая, только бы жить спокойно.
– Прости, что заставил тебя пережить столько боли, мой друг. – Прервал мои мысли голос Севера. – Но думаю, это поможет тебе легче встретить свою судьбу. Поможет выстоять...
Мне не хотелось об этом думать... Ещё хотя бы чуточку!.. Ведь на мою печальную судьбу у меня оставалось ещё достаточно предостаточно времени. Поэтому, чтобы поменять наболевшую тему, я опять начала задавать вопросы.
– Скажи мне, Север, почему у Магдалины и Радомира, да и у многих Волхвов я видела знак королевской «лилии»? Означает ли это, что все они были Франками? Можешь ли объяснить мне?
– Начнём с того, Изидора, что это неправильное понимание уже самого знака, – улыбнувшись, ответил Север. – Это была не лилия, когда его принесли во Франкию Меравингли.

Трёхлистник – боевой знак Славяно-Ариев

– ?!.
– Разве ты не знала, что это они принесли знак «Трёхлистника» в тогдашнюю Европу?.. – искренне удивился Север.
– Нет, я никогда об этом не слышала. И ты снова меня удивил!
– Трёхлистник когда-то, давным-давно, был боевым знаком Славяно-Ариев, Изидора. Это была магическая трава, которая чудесно помогала в бою – она давала воинам невероятную силу, она лечила раны и облегчала путь уходящим в другую жизнь. Эта чудесная трава росла далеко на Севере, и добывать её могли только волхвы и ведуны. Она всегда давалась воинам, уходившим защищать свою Родину. Идя на бой, каждый воин произносил привычное заклинание: «За Честь! За Совесть! За Веру!» Делая также при этом магическое движение – касался двумя пальцами левого и правого плеча и последним – середины лба. Вот что поистине означал Трёхлистник.
И таким принесли его с собою Меравингли. Ну, а потом, после гибели династии Меравинглей, новые короли присвоили его, как и всё остальное, объявив символом королевского дома Франции. А ритуал движения (или кресчения) «позаимствовала» себе та же христианская церковь, добавив к нему четвёртую, нижнюю часть... часть дьявола. К сожалению, история повторяется, Изидора...
Да, история и правда повторялась... И становилось от этого горько и грустно. Было ли хоть что-нибудь настоящим из всего того, что мы знали?.. Вдруг я почувствовала, будто на меня требовательно смотрят сотни незнакомых мне людей. Я поняла – это были те, кто ЗНАЛИ... Те, которые погибали, защищая правду... Они будто завещали мне донести ИСТИНУ до незнающих. Но я не могла. Я уходила... Так же, как ушли когда-то они сами.
Вдруг дверь с шумом распахнулась – в комнату ураганом ворвалась улыбающаяся, радостная Анна. Моё сердце высоко подскочило, а затем ухнуло в пропасть... Я не могла поверить, что вижу свою милую девочку!.. А она как ни в чём не бывало широко улыбалась, будто всё у неё было великолепно, и будто не висела над нашими жизнями страшная беда. – Мамочка, милая, а я чуть ли тебя нашла! О, Север!.. Ты пришёл нам помочь?.. Скажи, ты ведь поможешь нам, правда? – Заглядывая ему в глаза, уверенно спросила Анна.

Первая задача Циолковского

Рассмотрим движение ракеты в безвоздушном пространстве при отсутствии гравитационного поля. Движение в этом случае будет происходить только под действием реактивной силы.

Какую скорость V приобретет ракета к моменту, когда на­чальная масса М 0 уменьшится до конечного значения М к (до пол­ной выработки топлива)? Это – первая задача Циолковского.

Запишем уравнение Мещерского:

После разделения переменных получим:

Т.к. , после интегрирования получим:

Значение С получим из начальных условий: при t = 0 скорость V = V 0 =0 и масса М = М 0 .

­Откуда: .

Подставив С в выражение для V , окончательно получим:

где: М – текущая масса ракеты;

– относительная текущая масса ракеты.

Это формула Циолковского для определения идеальной скорости одноступенчатой ракеты, которая характеризует энергетические ха­рактеристики собственно ракеты.

По мере выработки топлива масса М и соответственно m уменьшаются, а скорость V – возрастает.

В частности, при значении скорость V ракеты всегда равна эффективной скорости w e истечения (см. рис. 2.6).

Рис. 2.6. Изменение скорости V в зависимости от m для различных w e

Когда топливо будет полностью выработано, а двигатель выключен, скорость V достигнет своего наибольшего конечного V к значения:

где: относительная конечная масса ;

M к , M 0 – конечная и начальная масса ракеты соответственно;

число Циолковского.

Другая форма записи конечной скорости:

где: М Т – масса топлива;

относительная масса топлива .

Рассмотрим, от каких параметров зависит путь S К , пройденный ракетой в идеальных условиях за время t К .

Очевидно: .

При текущая масса М ракеты линейно зависит от времени:

Поэтому: .

Тогда после замены переменных:

или после интегрирования:

.

Величину, обратную n 0 называют тяговооруженностью :

Выясним, какое влияние оказывает тяговооруженность на время t работы двигателя.

Выше отмечалось, что при линейном законе изменения массы ЛА:

Учитывая, что:

Из последних двух выражений следует, что для ракет с одинаковыми скоростями истечения равным значениям m может соответствовать разное время работы двигателя: чем больше начальная тяговооруженность, тем меньше время.

На рис. 2.7 дана зависимость V = f (t ) для и различных, значений начальной тяговооруженности. Равные значения скорости, очевидно, имеют место при равные m.

Рис. 2.7. Зависимость скорости V от времени t полета для различных значений начальной тяговоорукенности



Увеличение конечной идеальной скорости ракеты можно достичь либо увеличением эффективной скорость истечения продуктов сгорания, либо уменьшением относи­тельной конечной массы m К (увеличением числа Z Циолковско­го). Закон же расхода топлива, равно как и абсолютные зна­чения начальной и конечной масс, не оказывают влияния на приобретенную скорость.

Путь, проходимый ракетой, зависит не только от и но и обратно пропорционален тяговооруженности, т.е. стартовому ускорению. Этот факт объясняется тем, что с увеличением, уменьшается время t работы двигателя, а следовательно, снижаются гравитацион­ные потери скорости. В итоге это проводит к увеличению конечной скорости ракеты, движущейся в поле тя­готения планеты, а, следовательно, растет и проходимый ею путь.

Основная задача ракеты – сообщить заданному полезному грузу определенную скорость. В зависимости от полезного груза и не­обходимой скорости назначается и запас топлива. Чем больше груз и конечная скорость, тем больший запас топлива M Т должен нахо­диться на борту, а следовательно, тем большим сказывается стар­товый вес ракеты, тем больше необходима тяга двигателя, что приводит к увеличению веса двигательной установки и веса всей конструкции ракеты в целом:

­ M П.Г и ­V К ® ­M Т ® М 0 ® ­R ® ­M констр. .

Из формулы Циолковского (61) следует, что увеличение конечной скорости ракеты может быть достигнуто либо увеличением эффективной скорости истечения продуктов сгорания из сопла ракетного двигателя, либо уменьшением относительной конечной массы. Реальный предел для существующих конструкций на сегодня м а максимально достижимое для химических ракетгых двигателей значение = 4400 м/с (топливо – ""водород – кислород"). Тогда:

Далее будет показано, что для выведения полезного груза на низкую круговую орбиту Земли необходима характеристическая скорость V x = 9400 м/с (необходимая фактическая скорость V факт = 7800 м/с). Разность между ними – = 1600м/с – это суммарные потери скорости, обусловленные совокупностью потерь скорости из-за отличий реальных условий полета от идеа­льных.

Приведенные количественные опенки свидетельствуют, что достижение первой космической скорости для создания ИСЗ Земли находится на пределе реальных возможностей одноступенчатых ра­кет с двигателем на химическом топливе. Такая одноступенча­тая ракета уже создана в Японии – в 1986 г. с ее помощью был осуществлен запуск ИСЗ массой » 800 кг на круговую орби­ту Земли. Добиться этого удалось за счет широкого применения в конструкции неметаллических и композиционных материалов, что обеспечило снижение ниже вышеуказанного предела. Однако вы­вод больших полезных грузов с помощью одноступенчатых ракет в ближайшем будущем не представляется возможным.

Основной недостаток одноступенчатой ракеты заключается в том, что конечная скорость сообщается не только полезному гру­зу, но и всей конструкции в целом. При увеличении веса конструк­ции это ложится дополнительным бременем на энергетику одно­ступенчатой ракеты, что накладывает ограничения на величину достижимой скорости.

Одна из плодотворных идей К.Э. Циолковско­го относится к созданию многоступенчатых ракет, способных за счет избавления от ненужной (балластной) массы освободившихся от топлива баков и других элементов конструкции значительно по­высить скорость сравнительно с простой одноступенчатой ракетой.

На рис. 2.8 приведена схема трехступенчатой ракеты с так называемым поперечным делением (схема "Тандем").

Рис. 2.8. Схема трехступенчатой ракеты

Под СТУПЕНЬЮ многоступенчатой ракеты понимается одноступенчатая ракета, состоящая из ракетного блока (РБ) и условного полезного груза в виде оставшейся (верхней) части ракеты. Т.о., последующая i -я ступень является полезным грузом преды­дущей (i – 1)-й ступени.

Вывод полезного груза с помощью многоступенчатой ракеты осуществляют следующим образом.

На старте, работает наиболее мощный двигатель первой ступени, способный поднять ра­кету со стартового устройства и сообщить ей определенную скорость. После того, как будет израсходовано топливо в баках первой ступени, она отбрасывается, а дальнейшее увеличение скорости достигается за счет работы двигателей следующей сту­пени и т.д. Теоретически процесс деления можно вести до беско­нечности. Однако, на практике выбор числа ступеней следует рас­сматривать, как предмет поиска оптимального конструктивного варианта. Увеличение числа ступеней при заданной массе М П.Г. полезного груза ведет к уменьшению стартовой массы М 0 ракеты, но при переходе от n ступени к (n + 1)-й выигрыш с числом n уменьшается, ухудшаются весовые характеристики отдельных ракетных блоков, увеличиваются экономические затраты и снижается надежность. Продемонстрируем это на реальном числовом примере:

Таким образом, в отличие от одноступенчатой, в многосту­пенчатой ракете одновременно с полезным грузом заданную конечную скорость приобретает масса конструкции не всей ракеты, а только последней ступень. Массы же ракетных блоков предыдущих ступеней получают меньшие скорости, что приводит к экономия энергетических затрат.

Введем следующие обозначения:

, – соответственно текущее и конечное значения относительной массы i -й ступени;

– скорость истечения при полете i -й ступе­ни;

, –соответственно текущее значение скорости и конечное значение, приобретенное i -й ступенью.

После того, как выработается, топливо 1-й ступени:

где – относительная конечная масса 1-й ступени;

M TI - – масса топлива в баках 1-й ступени.

Скорость полета 2-й ступени складывается из конечной скорости 1-й ступени и текущей скорости, приобретенной 2-й ступенью: . После выработки топлива 2-й ступени:

где: относительная конечная масса 2-й ступени;

M 0 II – стартовая масса 2-й ступени;

M Т II – масса топлива в баках 2-й ступени.

Тактом образом, каждая последующая ступень дает приращение скорости. В итоге, конечная скорость многоступенчатой ракеты определится как сумма скоростей, приобретенных всеми n ступенями:

В подобном случае часто произведение приравни­вают некоторому эквивалентному значению, называемому суммарной относительной массой. Тогда:

Суммарная относительная масса – это относительная конечная масса такой гипотетической одноступенчатой ракеты, ко­торая приобретает ту же скорость, что и соответствующая много­ступенчатая ракета при равных скоростях истечения по ступеням.

Типичный график набора скорости для многоступенчатой ракеты приведен на рис. 2.9. В осях m I , V I и m II , V II построе­ны зависимости для каждой ступени в соответствии с (2.24). В осях, показана зависимость (2.26).

Рис. 2.9. График набора скорости двухступенчатой ракеты в зависимости от m I , m II ,

  • Физика
  • Жестокими законы окружающей нас природы можно назвать только в переносном смысле. Мы создали машины, способные освободить нас от уз, удерживающих в гравитационном колодце всё человечество, но управление некоторыми из их аспектов остаётся вне наших сил. Если мы хотим начать наше путешествие по Солнечной системе, то эти ограничения придётся как-то обходить.

    Современные ракеты отбрасывают часть собственной массы в виде газа из сопел двигателей, что даёт им возможность двигаться в противоположном направлении. Это реально благодаря третьему закону Ньютона, который был сформулирован в 1687 году. Всему нашему ракетному движению мы обязаны формуле Циолковского 1903 года.

    В формуле всего четыре переменных (слева направо): конечная скорость летательного аппарата, удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива), начальная масса летательного аппарата (полезная нагрузка, конструкция и топливо) и его конечная масса (полезная нагрузка и конструкция).

    Как можно изменить одну из переменных, если три другие уже заданы? Это просто невозможно, никакая форма желания, хотения или просьб здесь не поможет.

    Именно потери на гравитацию определяют пределы человеческого исследования космоса, и мы вынуждены их учитывать, когда мы выбираем место, куда мы хотим отправиться. Сегодня таких мест не так уж и много. С земной поверхности мы можем оказаться на орбите Земли, с орбиты Земли можно отправиться на поверхность Луны, или на поверхность Марса, или в пространство между Луной и Землёй. Возможны различные комбинации, но с текущим развитием технологий это самые вероятные точки назначения.

    Представленные ниже значения не учитывают никакие потери на, к примеру, сопротивление атмосферы, но значения достаточно близки для иллюстрации того, что нужно принять как должное. Это в некотором роде стоимость полёта.

    Как можно заметить, путь от Земли на орбиту, эти жалкие 400 километров - это самая затратная часть полёта. Это целая половина «стоимости» полёта на Марс, даже до Луны добраться «стоит» меньше. Всё это связано с гравитационным притяжением нашего космического дома.

    А лететь нам придётся на ракете с химическими двигателями; пусть и есть перспективные разработки, но реальными остаются традиционные, используемые уже на протяжении более 60 лет в пилотируемой космонавтике двигатели. Химическое топливо накладывает ограничение на количество энергии, которое можно из них извлечь, а значит и вложить в ракету, и мы используем самые эффективные реакции, известные человечеству. И вновь нам придётся смириться с некоторым значением переменной, которое мы не в силах изменить.

    Ниже представлены как некоторые виды ракетного топлива, которые хоть раз были использованы для приведения в движение аппаратов с человеком на борту или планируются к использованию, так и их удельные импульсы. Метан-кислород находится под рассмотрением для будущих экспедиций на Луну и Марс. Самовоспламеняющееся двухкомпонентное жидкое ракетное топливо использовалось для посадочного лунного модуля программы «Аполлон» из-за своей простоты.

    Самой эффективной парой остаётся кислород-водородная, и химия не может дать нам больше. В конце 70-х годов прошлого века ядерный ракетный двигатель с водородом в качестве рабочего тела, который разгоняла теплота управляемой ядерной реакции, выдал 8,3 км/с.

    Итак, единственное, что мы теперь можем изменить в формуле Циолковского - это отношение масс летательного аппарата. Ракета должна быть построена таким образом, чтобы это отношение имело какое-то заданное значение, иначе она просто не достигнет своей цели. Что-то можно сделать, если добавить несколько гениальных решений в конструкцию, но в целом это мало повлияет на результат - химию топлива и гравитацию небесных тел не изменить.

    Итак, что имеем? Вот процентное соотношение топлива от общей массы ракеты, необходимое для попадания ракеты на орбиту Земли.

    Полученные цифры не учитывают разнообразные потери сопротивления атмосферы, неполного сгорания и других отрицательных факторов, поэтому реальное отношение чуть ближе к 100%. Прекрасные инженерные решения типа разделения на ступени, нескольких видов топлива (например, керосин или твёрдое топливо для первой ступени, водород для остальных) очень помогают в ситуации, когда лишь порядка 10% от массы аппарата остаётся на собственно ракету. Масса полезной нагрузки иногда и в буквальном смысле идёт на вес золота.

    Характеристики реальных ракет не сильно отличаются от этих идеальных, полученных без учёта множества факторов значений. Самая большая в истории человечества ракета «Сатурн-5» на стартовом столе имела топлива 85% от всей своей массы. У неё было три ступени: первая работала на керосине и кислороде, вторая и третья - на водороде и кислороде. Такой же показатель у «Шаттлов». «Союз» использует керосин на всех своих ступенях, поэтому масса его топлива составляет 91% от общей массы ракеты. Использование пары водород-кислород сопряжено с большим количеством технических трудностей, но эта комбинация более эффективна; керосин в паре с кислородом предоставляет возможность использовать более простые и надёжные решения.

    15% массы ракеты - это куда меньше, чем кажется. У ракеты должны быть баки, трубы, ведущие к двигателям, корпус, который должен быть в состоянии выдерживать как сверхзвуковой полёт в атмосфере после нечеловеческого жара стартовой площадки, так и холод безвоздушного пространства. Ракету нужно вести, управлять ей с помощью сверхзвуковых рулей и маневровых двигателей. Хрупкие тела людей в космическом корабле нужно обеспечивать кислородом, а также удалять углекислоту, их нужно защитить от жара и холода, дать им возможность безопасно вернуться на поверхность родной планеты. Наконец, люди - не единственная нагрузка ракеты: мы не запускаем людей просто для развлечения, вернее, мы можем запустить человека ради самого факта, но лишь один раз. С людьми в космос летит и разнообразное оборудование для проведения экспериментов, поскольку полёты в космос имеют целью научные исследования.

    Реальная масса полезной нагрузки ракет куда меньше этих 10%-15%. «Сатурн-5», единственная ракета, которая помогла человеку ступить на Луну, доставляла на орбиту Земли всего 4% от своей общей массы, всего же на орбиту доставлялось 120 тонн. «Шаттлы» могли доставлять примерно столько же (100 тонн), но реальная полезная нагрузка составляла порядка 20 тонн, 1% от общей массы.

    Сравним ракеты с привычными нам транспортными средствами. (Конечно, ракета имеет баки с окислителями, а земной транспорт использует для этого кислород воздуха.)

    Легко заметить, как отличаются материалы и конструкция транспортного средства в зависимости от относительной массы топлива. Транспорт с топливом массой менее 10% от его общей массы обычно делается из стали, а над его конструкцией нет нужды особо думать: прикрепи эту часть к той и усиль корпус, где требует интуиция. Десятитонный грузовик можно сильно перегрузить, но он будет продолжать двигаться, пусть и медленно.

    Воздушный транспорт требует уже более серьёзного подхода и лёгких конструкций из алюминия, магния, титана, композитных материалов. Тут уже просто так ничего не поменяешь, а над любой мелкой деталью нужно подумать дважды. Машины подобного рода не могут работать так далеко за пределами своих лимитов нагрузок. 60%-70% от массы этих аппаратов составляет собственно вес транспортного средства с полезной нагрузкой, и с применением некоторых инженерных решений возможна комфортная, безопасная и выгодная эксплуатация.

    А ракеты, где 85% приходится на топливо, находятся на пределе наших инженерных способностей. Мы едва можем их производить, они требуют постоянного улучшения для возможности их использовать. Внешне небольшие изменения требуют огромного количества разнообразного анализа и тестирования прототипов в аэродинамических трубах, вибростендах, а для пробного запуска следует удалить персонал в бункер на пару-тройку километров от стартовой площадки - даже после всех этих проверок возможны происшествия. Очень часто превышать нагрузки более, чем на 10% от заданного техническими требованиями, нельзя. Это аналогично ситуации, когда после разгона до 44 километров в час велосипед развалится на мельчайшие винтики просто потому, что предельной скоростью является 40 км/ч.

    Чудо массового производства, пивная алюминиевая банка примерно на 94% состоит из своего содержимого, и лишь 6% приходится на корпус, но каким-то образом этот показатель лучше у внешнего бака Шаттла, несмотря на то, что в нём содержится не напиток чуть холоднее комнатной температуры, а высокоактивные жидкости температурой примерно на 20 градусов выше температуры абсолютного нуля, сжатые до ужасного давления. При этом этот топливный бак может выдержать перегрузку в 3 g, сохраняя поток окислителя и горючего на уровне 1,5 тонн в секунду.

    Дон Петтит описывает детали экспедиции STS-126 ноября 2008 года. Двигатели челнока должны были отключиться при достижении скорости 7824 м/с, но если бы это произошло на уровне 7806 м/с, то космический аппарат стал бы спутником Земли, но не попал бы на целевую орбиту. Говоря проще, «Индевор» не достиг бы МКС. Большая ли это разница? Это примерно аналогично ситуации, когда нужно заплатить 10 долларов, и для этого не хватает всего лишь двух центов (0,2%). Хорошо, в этом случае можно было бы использовать часть топлива для орбитальных манёвров. Если бы скорость была всего на 3% ниже, то не хватило бы и этих запасов, и челнок пришлось бы сажать где-то в Испании. Эти 3% можно было потерять, если маршевый двигатель отключился бы всего на 8 секунд раньше.

    Представим наилучшее стечение обстоятельств: бак для Шаттла (массу двигателей мы отбросим) и водород-кислородное топливо. Если подставить значения в формулу Циолковского, то станет ясным, что при радиусе нашей планеты в полтора раза больше его нынешнего мы никогда бы не достигли космоса только за счёт технологии химических ракетных двигателей .

    И всё это - последствия формулы Циолковского. Если мы хотим избавиться от её жестокого господства, нам придётся создать работающие версии принципиально новых двигателей. Возможно, тогда ракеты станут такими же безопасными, привычными и надёжными, как и реактивные пассажирские самолёты.

    На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью U относительно ракеты. Обозначим массу выброшенных газов через m, а массу ракеты после истечения газов через M. Тогда для замкнутой системы «ракета + газы» можно записать на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия):, V= - где V - скорость ракеты после истечения газов.

    Здесь предполагалось, что начальная скорость ракеты равнялась нулю.

    Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно. На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

    Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью V. В течение малого промежутка времени Дt из ракеты будет выброшена некоторая порция газа с относительной скоростью U. Ракета в момент t + Дt будет иметь скорость а ее масса станет равной M + ДM, где ДM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна -ДM > 0. Скорость газов в инерциальной системе OX будет равна V+U. Применим закон сохранения импульса. В момент времени t + Дt импульс ракеты равен ()(M + ДM)а импульс испущенных газов равен В момент времени t импульс всей системы был равен MV. Предполагая систему «ракета + газы» замкнутой, можно записать:

    Величиной можно пренебречь, так как |ДM| << M. Разделив обе части последнего соотношения на Дt и перейдя к пределу при Дt > 0, получим

    Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги F p Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение

    выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:

    где u - модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу для конечной скорости х ракеты:

    где - отношение начальной и конечной масс ракеты. Эта формула называется формулой Циолковского. Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости х = х 1 = 7,9·10 3 м/с при u = 3·10 3 м/с (скорости истечения газов при сгорании топлива бывают порядка 2-4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости х = 4u отношение должно быть = 50.

    Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.


    © 2024
    reaestate.ru - Недвижимость - юридический справочник