15.09.2021

Балансировка вращающихся деталей при ремонте машин. Балансировка деталей и сборочных единиц Статической балансировке подвергаются тела имеющие


Цель балансировки состоит в устранении неуравновешенности детали сборочной единицы относительно оси ее вращения. Неуравновешенность вращающейся детали приводит к возникновению центробежных сил которые могут быть причиной вибрации узла и всей машины преждевременного выхода из строя подшипников и других деталей. Основными причинами неуравновешенности деталей и узлов могут быть: погрешность формы деталей например овальность; неоднородность и неравномерность распределения материала детали относительно оси ее вращения образованные при...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


БАЛАНСИРОВКА ДЕТАЛЕЙ И УЗЛОВ

Виды неуравновешенности

Балансировка вращающихся частей машин — важный этап технологического процесса сборки машин и оборудования. Цель балансировки состоит в устранении неуравновешенности детали (сборочной единицы) относительно оси ее вращения. Неуравновешенность вращающейся детали приводит к возникновению центробежных сил, которые могут быть причиной вибрации узла и всей машины, преждевременного выхода из строя подшипников и других деталей. Основными причинами неуравновешенности деталей и узлов могут быть: погрешность формы деталей (например, овальность); неоднородность и неравномерность распределения материала детали относительно оси ее вращения, образованные при получении заготовки литьем, сваркой или наплавкой; неравномерное изнашивание и деформация детали в процессе эксплуатации; смещение детали относительно оси вращения из-за погрешности сборки и др.

Неуравновешенность характеризуется дисбалансом — величиной, равной произведению неуравновешенной массы детали или сборочной единицы на расстояние центра масс до оси вращения, а также углом дисбаланса, определяющим угловое расположение центра масс. Различают три вида неуравновешенности вращающихся деталей и узлов: статическую, динамическую и смешанную, как сочетание первых двух.

Статическая неуравновешенность имеет место, если массу тела можно рассматривать как приведенную к одной точке (центру масс), отстоящей на некотором расстоянии от оси вращения (рис. 6.52). Этот вид неуравновешенности характерен для деталей типа дисков, высота которых меньше диаметра (шкивы, зубчатые колеса, маховики, крыльчатки, рабочие колеса насосов и т.п.).

Образующаяся при вращении такой детали центробежная сила Q (Н) определяется по формуле

Q =mω 2 ρ,

где m — масса тела, кг; ω — угловая скорость вращения тела, рад/с; ρ — расстояние от оси вращения до центра массы, м.

На практике обычно принимается, что указанная центробежная сила не должна превышать 4—5 % веса детали.

Неуравновешенность рассматриваемого вида можно обнаружить, не приводя объект во вращение, поэтому она называется статической.

Рис. 6.52. Виды неуравновешенности вращающегося тела: а — статическая; б — динамическая; в — общий случай неуравновешенности

Динамическая неуравновешенность возникает, когда при вращении детали образуются две равные противоположно направленные центробежные силы Q, лежащие в плоскости, проходящей через ось вращения (рис. 6.52, б). Создаваемый ими момент пары сил М (Н) определяется уравнением

М =mω 2 ρa,

где а — расстояние между направлениями действия сил, м.

Динамическая неуравновешенность проявляется при вращении относительно длинных тел, например роторов электрических машин, валов с несколькими установленными зубчатыми колесами и т.п. Она может возникать даже при отсутствии статической неуравновешенности.

Общий случай неуравновешенности, также присущий длинным объектам, характеризуется тем, что на вращающийся объект одновременно действуют приведенная пара центробежных сил S—S (рис. 6.52, в) и приведенная центробежная сила Т. Эти силы можно привести к двум действующим в различных плоскостях силам Р и Q, расположенных, например, для удобства измерения в его опорах. Значения этих сил определяются по формулам:

Р =m 1 ρ 1 ω 2 ;

Q= m 2 ρ 2 ω 2

При вращении детали, кроме реакций от действующих на нее внешних сил, возникают также реакции от неуравновешенных сил Р и Q, что повышает нагрузку на подшипники и сокращает срок их службы.

Для уменьшения неуравновешенности до допустимых значений применяют балансировку вращающихся деталей и узлов, которая включает определение величины и угла дисбаланса и корректировку массы балансируемого изделия путем ее уменьшения или прибавления в определенных местах. В зависимости от вида неуравновешенности различают статическую или динамическую балансировку.

Статическая балансировка

Статической балансировкой достигается совмещение центра массы (центра тяжести объекта) с осью его вращения. Наличие неуравновешенности (дисбаланса) и место ее расположения определяют с помощью специальных устройств двух типов. На устройствах первого типа она определяется без сообщения вращения детали за счет уравновешивания ее дисбаланса, а на устройствах второго типа (балансировочных станках) — путем измерения центробежной силы, создаваемой неуравновешенной массой, поэтому вращение детали обязательно.

В машиностроении обычно применяются, как более простые, устройства первого типа: с двумя горизонтально установленными параллельными призмами (рис. 6.53, а) или двумя парами установленных на подшипниках качения дисков (рис. 6.53, 6), а также балансировочные весы (рис. 6.56). В первых двух случаях (см. рис. 6.53) балансируемую деталь 1 плотно насаживают на оправку 2 или закрепляют концентрично с ней, обычно с помощью раздвижных конусов. Оправку устанавливают на расположенные горизонтально призмы 3 или диски 4.

Метод выявления неуравновешенности зависит от величины дисбаланса. Если крутящий момент, создаваемый неуравновешенной массой относительно оси оправки, превышает момент сопротивления сил трения качению оправки по призмам (случай с явно выраженной неуравновешенностью), то деталь вместе с оправкой будет перекатываться по призмам, пока центр тяжести детали не займет нижнее положение. Закрепив груз массой m на диаметрально противоположной стороне детали, можно ее уравновесить. Для этого также в детали сверлят отверстия, которые заполняют более плотным материалом, например, свинцом. Обычно же уравновешивание обеспечивается удалением части металла с утяжеленной стороны детали (сверлением отверстий на определенную глубину, фрезерованием, спиливанием и т.п.).

Рис. 6.53. Схемы устройств для статической балансировки с призмами (а) и дисками (б); 1 — балансируемый объект; 2 — оправка; 3 — призма; 4 — диск

В обоих случаях для выполнения балансировки детали требуется знать удаляемую или добавляемую к ней массу металла. Для этого деталь с оправкой устанавливают на призмах так, чтобы центр их тяжести располагался и плоскости, проходящей через ось оправки. В диаметрально противоположной точке детали прикрепляют такой груз Q, при котором неуравновешенная масса m может повернуть диск на небольшой (около 10°) угол. Затем оправку с деталью поворачивают в том же направлении на 180° так, чтобы центры приложения груза Q и массы m находились снова в одной горизонтальной плоскости. Если отпустить диск в этом положении, то он повернется в обратном направлении на угол α. Возле груза Q прикрепляют такой добавочный груз q (магнитный или липкий), который воспрепятствовал бы указанному повороту оправки 2 и мог обеспечить ее поворот на такой же малый угол в противоположном направлении.

Зная массы Q и q, определяют искомую массу уравновешивающего груза Q 0 :

Q 0 = Q + q/2.

Для обеспечения балансировки такую массу металла следует добавить к детали в точке приложения груза Q или удалить с детали в диаметрально противоположной точке. Если требуется изменить расчетную массу уравновешивающего груза или точку ее приложения, то пользуются соотношением

Q 0 = Q 1 R,

где г — радиус положения расчетного уравновешивающего груза Q 0 ; Q 1 — масса постоянного уравновешивающего груза; R — расстояние от оси оправки до точки его приложения.

Возможен также случай скрытой статической неуравновешенности, когда момент, создаваемый неуравновешенной массой детали, недостаточен для преодоления момента трения качения между оправкой и призмами, и оправка с деталью при установке на призмы или диски остаются неподвижными.

В этом случае для определения неуравновешенности деталь размечают по окружности на 8—12 равных частей, которые отмечают соответствующими точками, как показано на рис. 6.54. При сложности или невозможности разметки балансируемой детали применяют специальный диск с делениями, который закрепляют неподвижно на конце оправки.

Затем перекатывают оправку с деталью по призмам в направлении, указанном стрелкой, и поочередно совмещают размеченные точки с горизонтальной плоскостью, проходящей через ось вращения оправки. Для каждого из этих положений детали подбирают груз q, который устанавливают на расстоянии г от оси оправки. Под действием этого груза оправка с деталью должна поворачиваться примерно на одинаковый угол (около 10°) в направлении перекатывания по призмам. Положение, для которого величина этого груза минимальна, например 4, определяет плоскость расположения центра неуравновешенной массы G.

Рис. 6.54. Схема определения скрытой неуравновешенности на начальном (а) и завершающем (б) этапах

Затем груз q снимают, и оправку поворачивают на 180° в направлении, указанном на рис. 6.54 стрелкой. В точке 8 на том же расстоянии от оси вращения оправки закрепляют такой груз Q (рис. 6.54, б), который обеспечивает поворот в том же направлении и на такой же угол. Масса Q 0 материала, удаляемого в точке 4 или добавляемого в точке 8 для балансировки детали, определяется из условия ее равновесия:

Q 0 =Gp/r=(Q-g)/2.

При выборе типа устройства следует учитывать, что его чувствительность тем выше, чем меньше сила трения между оправкой и опорами, поэтому более точными являются устройства с балансировочными дисками (см. рис. 6.53, б). Преимуществом этих устройств являются также менее жесткие требования к точности их установки по сравнению с призмами и более удобные и безопасные условия труда, так как при расположении оправки между двумя парами дисков исключается возможность ее падения с балансируемой деталью. Для уменьшения трения в опорах с дисками применяют наложение на них вибраций. Соприкасающиеся поверхности оправки и призм или дисков должны быть точно изготовлены и содержаться в идеальном состоянии. На них не допускаются забоины, следы коррозии и др. дефекты, снижающие чувствительность устройства.

Для ее повышения применяют также балансировочные устройства с аэростатическими опорами (рис. 6.55). В этом случае оправка с изделием находятся во взвешенном состоянии за счет того, что в опору 1 по каналам 2 и 4 подается под определенным давлением сжатый воздух.

Высокую производительность и точность определения неуравновешенности некоторых деталей обеспечивают балансировочные весы (рис. 6.56). Для ряда типов деталей они являются более эффективными по сравнению с призматическими и роликовыми устройствами, так как позволяют непосредственно определять неуравновешенную массу и место ее расположения в детали.

Рис. 6.55. Схема стенда для статической балансировки на воздушной подушке: 1 — опора стенда; 2, 4 — каналы для подвода сжатого воздуха; 3 — оправка

Рис. 6.56. Схема балансировочных весов для небольших (а) и крупногабаритных (6) деталей: 1 — уравновешивающие грузы; 2 — коромысло; 3 — балансируемая деталь

Оправку с закрепленной на ней балансируемой деталью 3 (рис. 6.56, а) устанавливают на правом конце коромысла 2 весов. На левом конце коромысла подвешивают уравновешивающие грузы 1. Если центр тяжести проверяемой детали смещен относительно оси ее вращения, то при различных положениях детали показания весов будут неодинаковыми. Так, при положении центра тяжести детали в точках S1 или S3 (pиc. 6.56, а) весы покажут фактическую массу проверяемой детали. При положении центра тяжести в точке S2 их показания максимальны, а при положении центра тяжести в точке S4 — минимальны. Для определения положения центра тяжести детали показания весов фиксируют, периодически поворачивая ее вокруг своей оси на определенный угол, например, равный 30°.

Дисбаланс изделий типа дисков большого диаметра удобно определять на специальных весах (рис. 6.56, б). Они имеют две расположенные во взаимно перпендикулярных направлениях стрелки и приводятся в уравновешенное (горизонтальное) состояние с помощью грузов, расположенных диаметрально противоположно стрелкам.

Балансируемую деталь устанавливают с помощью специального приспособления на весах так, чтобы ее ось проходила через вершину опоры весов, выполненной в виде конического острия и соответствующего углубления в основании. При наличии у детали дисбаланса весы с деталью отклоняются от горизонтального положения. Перемещая по детали уравновешивающий груз, весы приводят в исходное (горизонтально) положение, контролируя его с помощью стрелок. По массе и положению уравновешивающего груза определяют величину и место нахождения дисбаланса.

Устройства второго типа для статической балансировки основаны на принципе регистрации центробежной силы, возникающей при вращении неотбалансированной детали. Они представляют собой специальные балансировочные станки, схема одного из которых приведена на рис. 6.57. Станок позволяет не только устанавливать наличие дисбаланса, но и устранять его сверлением отверстий.

Балансируемая деталь 1 устанавливается концентрично и закрепляется на столе 9, снабженном угловой шкалой. Двигатель 7 сообщает столу с деталью вращение с угловой частотой ω, поэтому при наличии у детали дисбаланса а возникает центробежная сила, под действием которой и реакции пружин 8 система получает колебательные движения относительно опоры 6. Последние фиксируются измерительным преобразователем (ИП), связанным со счетно-логическим устройством (СЛУ).

В момент максимального отклонения системы вправо СЛУ включает стробоскопическую лампу 4, освещающую угловую шкалу на столе 9, и передает на индикаторное устройство 5 сигнал, пропорциональный дисбалансу. Устройство 5, которое может быть стрелочного или цифрового типа, показывает значение требуемой глубины сверления.

Оператор фиксирует высвечиваемое на экране 3 угловое расположение дисбаланса. После остановки стол поворачивают вручную на требуемый угол и сверлом 2 в детали 1 сверлят отверстие на расстоянии г от оси вращения на глубину, необходимую для обеспечения балансировки детали. Существуют также балансировочные станки, на которых поворот диска в требуемую точку (или несколько точек) для выполнения сверления и процесс сверления выполняются в автоматическом режиме.

Рис. 6.57. Схема станка для статической балансировки: 1 — балансируемая деталь; 2 — сверло; 3 — экран; 4 — стробоскопическая лампа; 5 — индикаторное устройство; 6 — шарнирная опора; 7 — электродвигатель; 8 — пружина; 9 — стол; ИП — измерительный преобразователь; СЛУ — счетно-логическое устройство

Точность статической балансировки характеризуется величиной е 0 ω р , где е 0 — остаточный удельный дисбаланс; ω р - максимальная рабочая частота вращения детали при эксплуатации.

Балансировка на призмах (см. рис. 6.53, а) обеспечивает е 0 = 20—80 мкм, на дисковых опорах (см. рис. 6.53, б) е 0 = 15—25 мкм, в аэростатических опорах (см. рис. 6.55) — е 0 = 3—8 мкм, на станке по рис. 6.57 — е 0 = 1—3 мкм. Международным стандартом МС 1940 предусмотрено 11 классов точности балансировки.

Динамическая балансировка

Статическая балансировка недостаточна для устранения дисбаланса у длинных объектов, когда неуравновешенная масса распределена вдоль оси вращения и не может быть приведена к одному центру. Такие тела подвергаются динамической балансировке.

У динамически отбалансированной детали сумма моментов центробежных сил масс, вращающихся относительно оси детали, равна нулю. Поэтому динамической балансировкой достигают совпадения оси вращения детали с главной осью инерции данной системы.

Если динамически неуравновешенное тело установить на податливые опоры, то при его вращении они совершают колебательные движения, амплитуда которых пропорциональна значению действующих на опоры неуравновешенных центробежных сил Р и Q (рис. 6.58). Способы динамической балансировки основаны на измерении колебаний опор.

Динамическую балансировку каждого конца детали обычно выполняют отдельно. Сначала, например, опору Ι (см. рис. 6.58) оставляют подвижной, а противоположную опору II закрепляют. Поэтому вращающийся объект в этом случае совершает колебательные движения в пределах угла α относительно опоры II только под действием силы Р.

Для повышения точности определения дисбаланса детали амплитуду колебаний опор измеряют при частоте ее вращения, совпадающей с частотой собственных колебаний балансировочной системы, т.е. в условиях резонанса. При динамической балансировке определяют массу и положение грузов, которые следует добавить к детали или удалить с нее. С этой целью применяют специальные балансировочные станки различных моделей в зависимости от массы уравновешиваемых деталей. Балансировка свободного конца детали заключается в определении значения и направления силы Р и устранения ее вредного влияния установкой в определенном месте уравновешивающего груза или удалением определенного количества материала. Затем закрепляют опору Ι, а опору II освобождают и аналогично выполняют балансировку детали со второго конца. Для упрощения конструкции станка подвижной делают обычно одну опору, а возможность балансировки детали с двух концов обеспечивается ее переустановкой на 180°.

Рис. 6.58. Схема колебаний детали при динамической балансировке

На этом принципе основана схема станка (рис. 6.59) для динамической балансировки, аналогичного рассмотренному выше (см. рис. 6.57).

Рис. 6.59. Схема станка для динамической балансировки: 1 — балансируемая деталь; 2 — угловая шкала; 3 — экран; 4 — стробоскопическая лампа; 5 — индикаторное устройство; 6 — пружина; 7 — основание; 8 — опора; 9 — электродвигатель; 10 — электромагнитная муфта; ИП — измерительный преобразователь; СЛУ — счетно-логическое устройство

Устройства ИП, СЛУ, 5,4,3 и угловая шкала 2 имеют то же назначение, что и аналогичные элементы в станке по рис. 6.57.

Балансируемую деталь 1 устанавливают на опоры основания 7, которое может совершать под действием пары сил инерции Q 1 Q 2 и реакции пружины 6 колебания относительно оси 8. Деталь приводится во вращение двигателем 9 через электромагнитную муфту 10, с угловой скоростью ω, несколько большей, чем резонансная частота собственных колебаний системы.

После проведения балансировки детали в плоскости bb ее поворачивают на 180° для проведения балансировки в плоскости аа. О качестве динамической балансировки судят по амплитуде вибрации, допускаемое значение которой указывается в технической документации. Оно зависит от частоты вращения отбалансированной детали и при частоте вращения 1000 мин -1 составляет 0,1 мм, а при 3000 мин -1 — 0,05 мм.

Другие похожие работы, которые могут вас заинтересовать.вшм>

7702. БАЛАНСИРОВКА ДЕТАЛЕЙ (УЗЛОВ) 284.44 KB
Приобретение технических навыков выполнения статистической балансировки ведомого диска сцепления и динамической балансировки коленчатого вала с маховиком и сцеплением в сборе. Содержание работы: ознакомление с технологией балансировки изучение оборудования и оснастки для статистической и динамической балансировки устранение статического дисбаланса ведомого диска сцепления двигателей ЗМЗ и ЗИЛ. Оборудование и оснастка рабочего места: балансировочный станок ЦКБ 2468 приспособление для статической балансировки ведомых дисков сцепления с...
9476. РЕМОНТ ТИПОВЫХ ДЕТАЛЕЙ И УЗЛОВ МАШИН. ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ 8.91 MB
Высокая экономическая значимость этого при ремонте машин обусловлена тем что восстановлению подвергаются их наиболее сложные и дорогие детали. Виды технологических процессов восстановления Технологический процесс восстановления детали представляет совокупность действий направленных на изменение ее состояния как ремонтной заготовки с целью восстановления эксплуатационных свойств. Единичный технологический процесс предназначен для восстановления конкретной детали независимо от типа производства Типовой технологический процесс разрабатывается...
9451. ОЧИСТКА МАШИН, УЗЛОВ И ДЕТАЛЕЙ 14.11 MB
Эксплуатационные загрязнения образуются на наружных и внутренних поверхностях машин узлов и деталей. Осадки образуются из продуктов сгорания и физикохимического трансформирования топлива и масла механических примесей продуктов износа деталей и воды. Опыт и исследования показывают что благодаря качественной очистке деталей в процессе их восстановления повышается ресурс отремонтированных машин и возрастает производительность труда.
18894. Пригонка и сборка отдельных деталей и узлов механизма баластного насоса 901.45 KB
Основная часть: Пригонка и сборка отдельных деталей и узлов механизма баластного насоса. Приложения. Даже корректное расположение грузов не всегда может нормализовать и стабилизировать осадку судна в результате чего приходится наполнять его бесполезными с точки зрения реализации грузами. Водяной балласт является самым приемлемым корректирующим грузом на плавсредстве.
1951. Неуравновешенность роторов и их балансировка 159.7 KB
Если вращение ротора сопровождается появлением динамических реакций его подшипников что проявляется в виде вибрации станины то такой ротор называется неуравновешенным. Источником этих динамических реакций является главным образом несимметричное распределение массы ротора по его объему.1 б когда оси пересекаются в центре масс ротора S; Динамическую рис. Если масса ротора распределена относительно оси вращения равномерно то главная центральная ось инерции совпадает с осью вращения и ротор является уравновешенным или идеальным.
4640. МОДЕЛИРОВАНИЕ ЦИФРОВЫХ УЗЛОВ 568.49 KB
На кристаллах современных БИС можно поместить множество функциональных блоков старых ЭВМ вместе с цепями межблочных соединений. Разработка и тестирование таких кристаллов возможно только методами математического моделирования с использованием мощных компьютеров.
15907. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ СТАНЦИЙ И УЗЛОВ 667.65 KB
Железнодорожные станции их классификация 2. Железнодорожные станции их классификация Все железнодорожные линии делятся на перегоны или блок-участки. К ним относятся: разъезды обгонные пункты станции узлы. Станции – обеспечивают движение поездов по графику; отправление всех поездов в строгом соответствии с планом формирования поездов; исправными в техническом и коммерческом отношениях; обеспечивают безопасность движения при выполнении операций по приему отправлению и пропуску поездов производству маневров размещению и креплению грузов...
9483. Сборка узлов с подшипниками скольжения 10.89 MB
Сборка цельных подшипников. Основными факторами влияющими на работу и долговечность подшипника являются точность размеров втулки и шейки вала а также соосность подшипников которая должна быть обеспечена при их сборке. Соосность подшипников проверяется при помощи оптического прибора или контрольного вала который пропускается через все отверстия в корпусе. Шейки контрольного вала должны плотно прилегать к поверхностям подшипников.
11069. Расчет элементов и узлов аппаратуры связи 670.09 KB
В качестве задающего генератора в работе используется схема на биполярном транзисторе с пассивной RC- цепью. Генератор задает колебания с частотой 12.25 кГц и с определенным напряжением 16 В. Нелинейный преобразователь искажает форму сигнала и в его спектре появляются кратные гармоники, интенсивность которых зависит от степени искажения сигнала.
11774. процесс разборки узлов проточной части ТВД 1.24 MB
Перед началом разборки ТВД снимается обшивка всей турбины. Перед вскрытием ТВД должна быть удалена изоляция турбины так как в процессе ремонта производится зачистка под контроль металла цилиндров. Воздушный компрессор и ротор турбины высокого давления в сборе образуют узел компрессора и ротора ТВД.

Неуравновешенность (дисбаланс ) вращающихся частей является одним из факторов, лимитирующих надежность автомобилей в эксплуатации. Неуравновешенность — состояние, характеризующееся таким распределением масс, которое вызывает переменные нагрузки на опоры, повышенные износ и вибрацию, способствует быстрой утомляемости водителя.

Дисбаланс изделия — векторная величина, равная произведению локальной неуравновешенной массы т на расстояние до оси изделия г или произведению веса изделия G на расстояние от оси изделия до центра масс е, т. е. D = mr = Ge.

Виды неуравновешенности

а - статическая, б - динамическая, смешанная.

Проводится при возникновении в процессе изготовления (восстановления) деталей, сборки узлов и агрегатов и изменяет свое количественное значение в процессе эксплуатации и текущего ремонта.

В зависимости от взаимного расположения оси изделия и его главной центральной оси инерции различают три вида неуравновешенности: статическую, моментную и динамическую.
При статической неуравновешенности ось ОВ вращения детали смещена на эксцентриситет е и параллельна главной центральной оси инерции. Данная неуравновешенность присуща дискообразным деталям (маховики, диски сцепления, шкивы, крыльчатки, сцепления в сборе и др.) и проявляется как в статическом, так и в динамическом состоянии. Статическая неуравновешенность определяется главным вектором дисбалансов (статический дисбаланс).
При моментной неуравновешенности ось изделия и его главная центральная ось инерции пересекаются в центре масс. Данная неуравновешенность определяется главным моментом дисбалансов М или двумя равными по значению антипараллельными векторами дисбалансов в двух произвольных плоскостях.
Моментная неуравновешенность является частным случаем более общей — динамической неуравновешенности, при которой ось изделия и его главная центральная ось пересекаются не в центре масс или перекрещиваются. Присуща она деталям и узлам типа валов, состоит из статической и моментной неуравновешенностей и определяется главным вектором дисбалансов и главным моментом дисбалансов или двумя приведенными векторами дисбалансов (в общем случае разных по значению и непараллельных), лежащих в двух выбранных плоскостях.

Дисбаланс изделия характеризуется числовым значением (в г - мм, г см, кг-см) и углом дисбаланса (в град.) в системе координат, связанных с осью изделия.

Главный вектор дисбалансов В„ может быть разложен на два параллельных DCTl и Дт2, приложенных в выбранных плоскостях, а главный момент дисбалансов М может быть заменен моментом пары равных антипараллельных дисбалансов Ц,1 и DM2 в тех же плоскостях. Геометрические суммы Дт! + Ai = Д и Дт2 + А2 = А образуют два приведенных дисбаланса А и А в выбранных плоскостях, которые полностью определяют динамическую неуравновешенность изделия.
При вращении неуравновешенного изделия возникает переменная по величине и направлению центробежная сила инерции. Приведение изделий, обладающих неуравновешенностью, в уравновешенное состояние осуществляется их балансировкой, т. е. определением дисбаланса изделия и устранением (уменьшением) его путем удаления или добавления корректирующих в определенных точках масс. В зависимости от вида неуравновешенности тела различают два вида балансировки: статическую и динамическую.

Статическая балансировка .

Статическая балансировка производится на стендах с призмами или роликами либо на специальных станках для статической балансировки в динамическом режиме (при вращении тела). Такая балансировка повышает точность балансировки и открывает возможность автоматизации процесса.

Динамическая балансировка вращающихся деталей

При такой балансировке определяются и устраняются (уменьшаются) два приведенных дисбаланса А и А в выбранных плоскостях коррекции путем удаления или добавления двух приведенных корректирующих масс, в общем случае разных по значению и расположенных под разными углами коррекции, в системе координат, связанной с осью детали. При динамической балансировке устраняется (уменьшается) как статическая, так и моментальная неуравновешенность, и изделие становится полностью сбалансированным.

Допустимый дисбаланс деталей: коленчатого вала , карданного вала и.др.

После сборки вращающейся сборочной единицы, в которую входят сбалансированные детали (например: валы, насадные шестерни, муфты и др.) и другие детали (шпонки, штифты, стопорные винты и др.), возникает необходимость в повторной их балансировке, так как смещение одной из деталей, даже в пределах зазоров, предусмотренных чертежом, вызывает значительную неуравновешенность.

Несовпадение центра тяжести детали с осью вращения принято называть статической неуравновешенностью, а неравенство нулю центробежных моментов инерции – динамической неуравновешенностью.

Статическая неуравновешенность легко обнаруживается при установке детали опорными шейками или на оправках на горизонтальные параллели (ножи, призмы, валики) или ролики, а динамическая – лишь при вращении детали. В связи с этим балансировка бывает статическая и динамическая.

Статическая балансировка. Существует несколько методов выполнения статической балансировки. Наиболее часто встречаются в станкостроении балансировки на призмах и на дисках. Ножи, призмы и ролики должны быть калеными и шлифованными и перед балансировкой выверены на горизонтальность.

При балансировке на горизонтальных параллелях (рис. 1) допускаемые овальность и конусность шеек оправки не должны превышать 0,01-0,015 мм, а диаметры их должны быть одинаковыми.

Рис. 1. а – на горизонтальных параллелях (1 – центр тяжести детали; 2 – корректирующий груз); б – на дисках (1 – деталь; 2 – корректирующий груз)

Для уменьшения коэффициента трения параллели и шейки оправки рекомендуется подвергать закалке и тщательно шлифовать. Рабочую длину параллелей можно определять по формуле:

где d – диаметр шейки оправки.

Ширина рабочей поверхности параллелей (ленточки) равна (см):

где G – усилие, действующее на параллель, в кГ; Е – модуль упругости материала оправки и параллелей, в кГ/см 2 ; σ – допускаемое сжимающее напряжение в местах контакта шейки и параллели, в кГ/см 2 (для закаленных поверхностей σ=2 10 4 ÷ 3 10 4 кГ/см 2).

Величина d в см назначается из конструктивных соображений с учетом удобства установки балансируемой детали на оправку.

Дисбаланс определяется пробным прикреплением корректирующих грузов на поверхности балансируемой детали. Устраняется дисбаланс удалением эквивалентного количества материала с диаметрально противоположной стороны или установкой и закреплением соответствующих противовесов (корректирующих грузов).

Статическая балансировка шкива может быть выполнена следующим образом. На ободе шкива предварительно наносят мелом черту и сообщают ему вращение. Вращение шкива повторяют 3-4 раза. Если меловая черта будет останавливаться в разных положениях, то это будет указывать на то, что шкив сбалансирован правильно. Если меловая черта каждый раз будет останавливаться в одном положении, то это значит, что часть шкива, находящаяся внизу, тяжелее противоположной. Чтобы устранить это, уменьшают массу тяжелой части высверливанием отверстий или увеличивают массу противоположной части обода шкива, высверлив отверстия, а затем заливают их свинцом.

Чувствительность балансировки деталей весом до 10 т на горизонтальных параллелях (рис. 1, а):

где F – чувствительность метода в Г см; f – коэффициент трения качения (f=0,001 ÷ 0,005 см); G – вес детали или сборочной единицы в кг.

Чувствительность балансировки деталей весом до 10 т на дисках (рис. 1, б):

где F – чувствительность метода в Г см; f – коэффициент трения качения (f=0,001 ÷ 0,005 см); G – вес детали или сборочной единицы в кг;  – коэффициент трения качения в подшипниках дисков; r – радиус цапфы дисков в см; d – диаметр оправки в см; D – диаметр дисков в см; α – угол между осью оправки и осями дисков.

Точность балансировки на дисках больше, чем на горизонтальных призмах. Статическую балансировку чаще всего применяют для деталей типа дисков.

Балансировка деталей и сборочных единиц может быть выполнена на балансировочных весах в резонансном режиме колеблющейся системы, которая позволяет повысить точность балансировки.

Балансировку деталей весом до 100 кг на балансировочных весах выполняют следующим образом (рис. 2): испытываемую конструкцию 1 уравновешивают грузами 3 и разгоняют вращающуюся часть 1 конструкции до частоты вращения, превышающей частоту колебаний системы. После разгона электродвигатель отсоединяют от испытываемой конструкции, подвижная часть которой продолжает свободно вращаться, постепенно снижая скорость. Это исключает влияние возмущений от двигателя привода на колеблющуюся систему. Амплитуда смещения контрольной точки измеряют прибором 2 в момент совпадения частоты вращения шпинделя с собственной частотой колеблющейся системы, т. е. при резонансе, где амплитуда достигает наибольшего значения. Величина остаточной неуравновешенности при данном методе измерения не должна превышать 1,5-2 Г см.

Рис. 2.

По ряду изделий в настоящее время на основании опыта уже установились нормы допустимого смещения центра тяжести вращающихся деталей (табл. 1).

Таблица 1. Допустимая величина смещения центра тяжести

Группа деталей Наименование Смещение центра

тяжести, мкм

Группа деталей Наименование Смещение центра

тяжести, мкм

А Круги, роторы, валы и шкивы точных

шлифовальных станков

0,2-1,0 В Жесткие небольшие роторы

электродвигателей, генераторы

2-10
Б Высокооборотные электродвигатели,

приводы шлифовальных станков

0,5-2,5 Г Нормальные электродвигатели, вентиляторы,

детали машин и станков, быстроходные приводы и т. д.

5-25

Чувствительность балансировки деталей весом до 100 кг на балансировочных весах (рис. 2): F=20 ÷ 30 Г см.

Величина дисбаланса:

где ω – разность показаний прибора 2.

Динамическая балансировка деталей и сборочных единиц применяется для более точного определения дисбаланса, возникающего при вращении под действием центробежных сил. Для проведения динамической балансировки деталей и комплектов типа тел вращения применяют балансировочные станки.

Детали и комплекты типа муфт, зубчатых колес, шкивов балансируют на оправках. Оправку с деталью или сборочной единицей для балансировки устанавливают на балансировочном станке и соединяют со шпинделем станка.

Величина дисбаланса и место его расположения определяются приборами, установленными на станке. Дисбаланс устраняют обычно сверлением отверстия в детали или направлением металла на противоположной от места дисбаланса стороне детали.

Требуемая техническими условиями точность балансировки зависит от конструкции и назначения деталей и узлов, скорости их вращения, допустимых вибраций машины, необходимой долговечности опор.

Статическая балансировка может уравновешивать деталь относительно ее оси вращения, но не может устранить действие сил, стремящихся повернуть деталь вдоль продольной ее оси.

Динамическая балансировка устраняет оба вида неуравновешенности. Динамической балансировке подвергают быстроходные детали со значительным отношением длины к диаметру (роторы турбин, генераторов, электродвигателей, быстровращающиеся шпиндели станков, коленчатые валы автомобильных и авиационных двигателей и т. д.).

Динамическую балансировку производят на специальных станках высококвалифицированные рабочие. При динамической балансировке определяют величину и положение массы, которые нужно приложить к детали или отнять от нее, чтобы деталь оказалась уравновешенной статически и динамически.

Центробежные силы и моменты инерции, вызванные вращением неуравновешенной детали, создают колебательные движения из-за упругой податливости опор. Причем колебания их пропорциональны величине неуравновешенных центробежных сил, действующих на опоры. На этом принципе основана балансировка деталей и сборочных единиц машин.

Динамическая балансировка, выполняемая на современных автоматизированных балансировочных станках, в интервале 1-2 мин выдает данные: глубину и диаметр сверления, массу грузов, размеры контргрузов и места, где необходимо закрепить и снять грузы, а также амплитуду колебаний опор.

Динамической балансировке подвергаются детали и узлы длиной больше диаметра (коленчатые валы, шпиндели, роторы лопаточных машин и т. п.). Динамическая неуравновешенность, возникающая при вращении детали вследствие образования пары центробежных сил Р (рис. 3, а), может быть устранена приложением корректирующего момента от сил Р 1. Выбор плоскостей коррекции определяется конструкцией детали и удобством удаления излишков металла. Наиболее общий случай неуравновешенности детали, встречающийся на практике, показан на рис. 3, б.

Рис. 3. Принципиальная схема динамической балансировки деталей: а – динамическая неуравновешенность детали; Р – центробежные силы от неуравновешенных масс m, расположенных на плече r; Pt – центробежные силы от корректирующих грузов; б – статическая и динамическая неуравновешенность детали; Р’ – центробежная сила от массы m’, раскладываемая на силы Р и Р”, вызывающие статическую неуравновешенность

Выявление неуравновешенности производится на балансировочных машинах. В условиях индивидуального производства динамическую балансировку выполняют при помощи простых средств, к числу которых можно отнести, например, устройство для установки опор уравновешиваемой детали на упругие балки или на упругие (резиновые) подкладки.

Деталь приводят во вращение до скорости, превышающей условия резонанса.

Отключают привод (например, сбросом ремня) и замеряют амплитуду максимальных колебаний одной из опор. Прикреплением пробного груза к детали добиваются прекращения колебания этой опоры. Аналогичную процедуру выполняют в отношении другой опоры. Балансировка заканчивается по прекращении колебаний опор.

с упругими опорами, применяемой для деталей и узлов весом до 100 т (роторы мощных турбин) – на рис. 4.

Рис. 4. 1 – балансируемый объект; 2 – электромагнитная муфта; 3 – электродвигатель; 4 – подшипники; 5 – поддерживающие упругие стойки (рессоры); 6 – упоры, поочередно запирающие подшипники; 7 – механический рычажный индикатор для определения плоскости дисбаланса по меткам 8, вычерчиваемым острием индикатора на окрашенной колеблющейся шейке объекта; 9 – компенсирующие пробные грузы, прикрепляемые к объекту

Балансировку ведут при поочередном закреплении опор. Угловое положение дисбаланса находят при помощи механических или электрических индикаторов. Величина дисбаланса в выбранных плоскостях коррекции определяется прикреплением пробных компенсирующих грузов. Чувствительность зависит от веса и размеров объекта.

Балансировка на машинах рамного типа с регулируемыми компенсаторами дисбаланса применяется преимущественно для деталей и сборок малых и средних размеров весом до 100 кг.

Уравновешивание дисбаланса осуществляется вручную и механически.

На рис. 5 приведена схема балансировочной машины с ручным перемещением компенсирующего груза 3 на шпинделе станка.

Рис. 5. 1 – рама; 2 – балансируемая деталь, сборка; 3 – компенсатор дисбаланса

Груз 3 перемещают в радиальном и окружном направлениях и вручную корректируют его вес. Так определяют эквивалентное количество материала для удаления с детали. Дисбаланс определяют только в плоскости коррекции 1–1. Поэтому для определения дисбаланса детали в другой плоскости 2–2 необходимо ее переустановить с поворотом на 180° для определения величины и местоположения компенсатора в этой плоскости. Машина требует предварительной настройки по эталонной детали; колебания рамы вокруг горизонтальной оси отмечаются механическим измерителем амплитуды; величина неуравновешенных моментов в выбранных плоскостях коррекции определяется с точностью 10 -15 Г см 2 .

Отремонтированный агрегат считается уравновешенным, если при его работе равнодействующая всех сил, действующих на опоры агрегата, остается постоянной по величине и направлению.

Динамические нагрузки на опоры работающего агрегата обусловлены силами инерции деталей, которые движутся поступательно или вращаются. Агрегат будет уравновешенным в том случае, если он собран из одноименных деталей, движущихся поступательно, одинаковой массы и вращающихся деталей, прошедших балансировку.

Движущиеся детали изменяют свою массу или становятся при эксплуатации неуравновешенными в результате накопления загрязнений на их поверхностях, неравномерного изнашивания и деформирования. Это приводит к дополнительным нагрузкам в кинематических парах и накоплению усталостных повреждений в шейках валов, что в свою очередь снижает долговечность агрегатов.

Детали балансируют во время их восстановления (коленчатые валы, маховики и др.), а сборочные единицы (сцепления, коленчатые валы в сборе с маховиками и сцеплениями и др.) - после узловой сборки.

Балансировка - это уравновешивание сил инерции частей вращающегося изделия совмещением его центра масс, осей инерции и вращения путем снятия лишнего металла или установки противовесов.

При балансировке вращающихся изделий добиваются, чтобы нагрузки на их опоры от сил инерции были равны нулю. Вращающееся изделие полностью уравновешено при условиях

где М - масса изделия, г; r s - расстояние от центра масс изделия до его оси вращения, см; J { - центробежный момент инерции изделия, г-см 2 ; m jy г - и l j - масса (г) элемента изделия, расстояние (см) от центра его масс до оси вращения изделия и плечо (см) действия силы инерции элемента относительно оси, проходящей через центр масс изделия, соответственно; i = = 1... к - число элементов изделия.

Считают, что изделие уравновешено статически, если выполняется первое условие, и уравновешено динамически, если выполняется второе условие. В реальных условиях различают статическую, динамическую и смешанную неуравновешенность вращающихся деталей или сборочных единиц.

Статическая неуравновешенность (рис. 2.57, а) наблюдается у деталей типа дисков с малой длиной (маховиков, нажимных и ведомых дисков сцеплений, чугунных шкивов и др.), у которых возможна неуравновешенная сила инерции. Мерой статической неуравновешенности служит дисбаланс, направление которого совпадает с неуравновешенной силой инерции, а значение равно произведению Mr s (г-см). Способы статической балансировки состоят в совмещении центра масс детали с осью ее вращения путем снятия излишнего металла или установки противовеса. При этом определяют направление дисбаланса, затем на этом направлении на


Рис. 2.57. а - статическая; б - динамическая; в - смешанная

поверхности изделия снимают излишний металл по одну сторону с неуравновешенной массой от оси вращения или добавляют металл, если неуравновешенная масса находится по другую сторону от оси вращения детали. Массу т (г) снимаемого (добавляемого) металла определяют по формуле

где R - расстояние от оси вращения до центра массы снимаемого (добавляемого) металла, см.

Поверхность, с которой снимают металл или закрепляют противовес, должна быть наибольшего радиуса, поскольку в этом случае масса снимаемого (добавляемого) материала минимальная.

Балансировку ведут на роликах, горизонтальных призмах, качающихся дисках и на станках.

Устройства для статической балансировки деталей на роликах и горизонтальных призмах приведены на рис. 2.58, а, б. Деталь 1 устанавливают без зазора на оправку 2, которую в свою очередь устанавливают на ролики или призмы. Неуравновешенная деталь под действием силы тяжести провернется вокруг своей оси, при этом ее «тяжелая» часть окажется внизу. Балансировка на призмах дает более точные результаты, однако в этом случае требуется, чтобы их рабочие поверхности располагались горизонтально. Эти устройства показывают только направления дисбаланса, определение его значения затруднено и требует практического навыка.


Рис. 2.58. а - на роликах: 1 - деталь; 2 - оправка; 3 - ролики; б- на призмах: 1 - деталь; 2 - оправка; 3 - призмы; в - на качающемся диске: 1 - стрелка; 2 - деталь; 3 - острие; 4 - опора

Устройство для статической балансировки деталей на качающемся диске (рис. 2.58, в) лишено приведенного недостатка. Его статически отбалансированный диск имеет опоры (цилиндрическую поверхность и плоскость) для балансируемой детали. Соосно цилиндрической поверхности установлено острие 3, которое соприкасается с ответным коническим углублением опоры 4. Две стрелки 1 диска расположены во взаимно перпендикулярных направлениях. Деталь устанавливают на диск и ориентируют центрирующим пояском. Если диск с деталью под действием силы тяжести наклонились, то их приводят в горизонтальное положение путем перемещения по поверхности детали компенсирующего груза. Место нахождения груза и его масса показывают направление и величину дисбаланса.

Статическую балансировку изделий (маховиков, нажимных и ведомых дисков сцеплений, сцеплений в сборе и др.) в динамическом режиме (при их принудительном вращении) выполняют на станке модели 9765. Этот вид балансировки более точный, чем ранее рассмотренные.

Динамическая б) у статически уравновешенного изделия (центр масс находится на оси вращения) возникает в том случае, если имеются две неуравновешенные массы т, которые расположены по разные стороны от оси вращения на расстоянии г. Во время вращения изделия возникает момент S от двух равных сил инерции Р на плече /. Момент S вызывает переменные по направлению нагрузки на опоры изделия при его вращении. Динамическую неуравновешенность устраняют снятием или добавлением двух равных масс в плоскости действия момента S, чтобы появился новый момент, уравновешивающий начальный. Этот вид неуравновешенности выявляют при принудительном вращении изделия. Динамическая неуравновешенность измеряется в ньютон-квадратный метр (Н м 2).

Смешанная неуравновешенность (см. рис. 2.57, в) наиболее часто встречается в реальных условиях, когда имеются неуравновешенные сила инерции и момент от двух равных сил инерции. Этот вид неуравновешенности характерен для длинных деталей или сборочных единиц типа валов (Н м).

Система любого числа неуравновешенных сил инерции сводится к двум силам, которые расположены в двух произвольно выбранных перпендикулярно оси детали плоскостях, удобных для уравновешивания. Такие плоскости называют плоскостями коррекции. Например, у коленчатого вала эти плоскости проходят через крайние противовесы.

Пусть имеется ряд сил, в том числе Р 1 и Р 2 от неуравновешенных масс и т 2 - Заменим центробежные силы Р х и Р 2 их составляющими Р и Р" и Р" 2 и Р 2 в плоскостях коррекции, расположенных друг от друга на расстоянии /. Сложим эти составляющие в каждой плоскости по правилу параллелограмма и получим равнодействующие и Т 2 . В точке приложения силы Т { приложим две равные между собой, но противоположно направленные силы Т 2 . В результате получаем две неуравновешенные силы Т 2 и Q в плоскостях коррекции. Сила Q является векторной суммой сил Т { и Т 2 . Момент Т 2 1 определяет динамическую неуравновешенность, а сила Q - статическую. Полное уравновешивание изделия достигается установкой противовесов т ъ и т 4 в плоскостях коррекции на линиях действия сил Т 2 и Ту

Направление (угол) и значение дисбаланса в каждой плоскости коррекции вала определяют на балансировочных станках моделей, например, БМ-4У, КИ-4274, МС-9716 или фирмы Schenk (Германия). На станках балансируют сборочные единицы (коленчатые валы с маховиками, карданные валы и др.), вращающиеся при работе агрегата в двух и более опорах.

Принцип действия балансировочного станка (рис. 2.59) заключается в следующем. Изделие устанавливают на упругие опоры (люльки) 1 и приводят во вращение с частотой 720... 1100 мин -1 от электродвигателя 6. Под действием центробежных сил инерции опоры с изделием будут колебаться вдоль горизонтальной оси. С перемещающимися опорами заодно движутся и обмотки датчиков перемещений 2, находящиеся

Рис. 2.59.

1 - опоры (люльки); 2 - датчик перемещений; 3 - блок усиления; 4 - миллиамперметр; 5 - лампа стробоскопа; 6 - электродвигатель; 7 - лимб стробоскопа; 8 - маховик

в магнитном поле постоянных магнитов. В каждой обмотке наводится ЭДС, значение которой пропорционально амплитуде колебаний. Сигнал от датчика поступает в блок усиления 3 и в измененном виде фиксируется миллиамперметром 4, шкала которого составлена в единицах дисбаланса (г см). Сигнал об угле поворота шпинделя, при котором опора переместилась на максимальное расстояние, поступает на малоинерционную лампу 5 стробоскопа, вспышка которой освещает небольшой участок обода вращающегося лимба 7 с угловыми делениями от 0 до 360°. Рабочий воспринимает лимб остановленным с неподвижными цифрами. Значение и направление дисбаланса изделия поочередно определяют на каждой из двух опор станка.

После каждого определения направления и значения дисбаланса останавливают станок. При отключенном электродвигателе люльки запираются электромагнитами. Затем вращением изделия рукой за маховик 8 устанавливают его в нужное угловое положение. С помощью радиально-сверлильного станка или электрической дрели высверливают лишний металл необходимой массы в плоскости коррекции. Длина сверления пропорциональна показаниям миллиамперметра.

При больших скоростях вращения даже незначительная неуравновешенная масса детали относительно оси вращения может явиться причиной появления значительной неуравновешенной центробежной силы, вызывающей дополнительную динамическую нагрузку на подшипники, что приводит к преждевременному износу деталей. Неуравновешенные центробежные силы являются одной из главных причин вибрации гидропередачи, которая представляет собой весьма вредное явление.

Статическая балансировка. Показателем статической уравновешенности детали является способность ее сохранять состояние покоя в любом положении на горизонтальных направляющих. Балансируемую деталь устанавливают таким образом, чтобы неуравновешенная масса Я (рис. 41) располагалась в горизонтальной плоскости, проходящей через ось балансируемой детали. На противоположной стороне детали прикрепляют груз п, при котором неуравновешенная масса Я могла бы сообщить балансируемой детали поворот на небольшой угол. Затем поворачивают балансируемую деталь в том же направлении на 180°, т. е. в такое положение, чтобы груз п и масса Я оказались бы снова в горизонтальной плоскости. В этом случае масса Я перевесит и изделие будет стремиться повернуться в обратном направлении. Далее подбирают добавочный груз Р к грузу так, чтобы балансируемое изделие оставалось в том положении, в какое его ставят.

Если статическая балансировка выполняется на призмах качения, то возникающие силы трения в точках опоры

Рис. 41. Схема статической балансировки детали препятствуют перекатыванию детали. Точность балансировки зависит от соотношения вращающего момента, создаваемого неуравновешенной массой, и момента сил трения в точках опоры.

Динамическая балансировка. Вращающиеся части гидропередачи, имеющие форму роторов, хотя и уравновешенные статически, могут иметь дисбаланс, который способствует износу шеек валов и подшипников, а также появлению вибраций, могущих привести к разрушению деталей. Неуравновешенные массы создают центробежные силы. Независимо от места расположения в роторе (например, вал в сборе с насосными колесами) неуравновешенных масс, их величины и количества суммарное действие сводится к двум силам, действующим на опоры, разным по величине и направлению. Эти силы вызывают колебания подшипников, а через них и корпусов гидропередачи.

Для динамической балансировки используют станки Минского станкостроительного завода. Устранение неуравновешенности осуществляется высверливанием или снятием металла в технологически предусмотренных местах (плоскостях исправления).

Задачами динамического уравновешивания являются выбор плоскости корректирования неуравновешенных масс и определение величины и положения приведенных неуравновешенных масс в этих плоскостях.

Простейшее устройство для динамического уравновешивания представляет собой две упругие подшипниковые опоры (рис. 42, а). Одну из опор с помощью соответствующих приспособлений при уравновешивании запирают, а другой дают возможность свободно колебаться в вертикальной плоскости, и при прохождении резонанса измеряют размах колебаний этой опоры. Разделив окружность одного из колес на восемь равных частей и пронумеровав их (рис. 42, б), устанавливают поочередно в каждом из пронумерованных мест (на одинаковом радиусе) пробный груз и измеряют размах резонансных колебаний при каждой установке пробного груза.

Результаты измерений записывают и наносят в системе прямоугольных координат кривую (рис. 42, в), по которой судят о положении и величине уравновешивающего груза. Наиболее низкая точка полученной кривой (точка К) определяет собой место расположения уравно-


Рис. 42, Схема динамического уравновешивания вешивакяцего груза. Путем нескольких попыток изменения груза в данной точке определяется масса уравновешивающего груза.

Уравновесив деталь в одной плоскости, аналогичным образом поступают при ее балансировке в другой плоскости. Установка уравновешивающего груза на другой стороне вызывает нарушение уравновешенности первой стороны. Поэтому производится повторная проверка с установкой необходимого дополнительного корректировочного груза, который бы компенсировал нарушение уравновешенности.


© 2024
reaestate.ru - Недвижимость - юридический справочник