29.08.2019

33 линейная модель множественной регрессии. Модель множественной регрессии


Цель : необходимо научиться определять параметры уравнения множественной линейной регрессии, используя ме­тод наименьших квадратов (МНК), рассчитывать коэффициент множественной корреляции.

Ключевые слова : линейная модель множественной регрессии, матрица парных коэффициентов корреляции, коэффициент множественной детерминации, индекс корреляции.

План лекции:

1. Классическая нормальная линейная модель множественной регрессии.

2. Оценка параметров линейной модели множественной регрессии.

3. Множественная и частная корреляция.

1.Классическая нормальная линейная модель множественной регрессии.

Экономические явления, как правило, определяются большим числом одновременно действующих факторов. В качестве примера такой связи можно рассматривать зависимость доходности финансовых активов от следующих факторов: темпов прироста ВВП, уровня процентных ставок, уровня инфляции и уровня цен на нефть.

В связи с этим возникает задача исследования зависимости одной зависимой переменной у от нескольких объясняющих факторных переменных х 1 , х 2 ,…, х n , оказывающих на нее влияние. Эта задача решается с помощью множественного регрессионного анализа .

Как и в парной зависимости, используются разные виды уравнений множественной регрессии: линейные и нелинейные.

Ввиду четкой интерпретации параметров наиболее широко используются линейная и степенная функции.

В линейной множественной регрессии параметры при количественной объясняющей переменной интерпретируется как среднее изменение результирующей переменной при единичном изменении самой объясняющей переменной и неизменных значениях остальных независимых переменных.

Пример. Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

где у – расходы семьи за месяц на продукты питания, тыс.тг.

х 1 – среднемесячный доход на одного члена семьи, тыс.тг.

х 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс.тг. расходы на питание возрастут в среднем на 350 тг. при том же размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же доходах предполагает дополнительный рост расходов на питание на 730 тг.

В степенной функции коэффициенты b j являются коэффициентами эластичности. Они показывают, на сколько процентов в среднем изменяется результат с изменением соответствующего фактора на 1% при неизменности действия других факторов.

Пример. Предположим, что при исследовании спроса на мясо получено уравнение

,

где у – количество спроса на мясо,


х 1 – цена,

х 2 – доход.

Следовательно, рост цен на 1% при том же доходе вызывает снижение спроса в среднем на 2,63%. Увеличение дохода на 1% обуславливает при неизменных ценах рост спроса на 1,11%.

где b 0 , b 1 ,…,b k – параметры модели, а ε – случайный член, называется классической нормальной линейной регрессионной моделью , если выполняются следующие условия (называемые условиями Гаусса-Маркова):

1. Математическое ожидание случайного члена в любом наблюдении должно быть равно нулю, т.е. .

2. Дисперсия случайного члена должна быть постоянной для всех наблюдений, т.е. .

3. Случайные члены должны быть статистически независимы (некоррелированы) между собой, .

4. - есть нормально распределенная случайная величина.

2.Оценка параметров линейной модели множественной регрессии.

Параметры уравнения множественной регрессии оцениваются методом наименьших квадратов. При его применении строится система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии.

Так, для уравнения система нормальных уравнений составит:

Ее решение может быть осуществлено методом Крамера:

,

где ∆ - определитель системы,

Частные определители.

,

а получаются путем замены соответствующего столбца определителя системы столбцом свободных членов.

Рассмотрим линейную модель зависимости результативного признака у от двух факторных признаков и . Эта модель имеет вид:

Для нахождения параметров и решается система нормальных уравнений:

3.Множественная и частная корреляция.

Многофакторная система требует множество показателей тесноты связей, имеющих разный смысл и применение. Основой измерения связей факторными признаками является матрица парных коэффициентов корреляции, которые определяются по формуле:

На основе парных коэффициентов корреляции вычисляется наиболее общий показатель тесноты связи всех входящих в уравнение регрессии факторов с результирующим признаком – коэффициент множественной детерминации как частное от деления определителя матрицы на опрделитель матрицы ∆: , где

;

.

Этим способом можно определить коэффициент детерминации, не вычисляя расчетных значений результативного признака для всех единиц совокупности, если совокупность состоит из сотен и тысяч единиц.

4.1. Матричная форма регрессионной модели

Экономическое явление определяется большим числом одновременно и совокупно действующих факторов. Модель множественной регрессии запишется так:

Модель линейной множественной регрессии можно записать в матричной форме, имея в виду, что коэффициенты α и β заменены их оценками.

Матрица X T X – неособенная и её ранг равен её размеру, то есть (р +1).

4.2. Отбор факторов для моделей множественной регрессии

Факторы, включаемые в модель, должны существенным образом объяснить вариацию результативной переменной.

Существует ряд способов отбора факторов, наибольшее распространение из которых имеют метод короткой регрессии и метод длинной регрессии.

При использовании метода короткой регрессии в начале в модель включают только наиболее важные факторы с экономически содержательной точки зрения.

С этим набором факторов строится модель и для неё определяются показатели качества ESS , R 2 , F , t a , t bj . Затем в модель добавляется следующий фактор и вновь строится модель. Проводится анализ, улучшилась или ухудшилась модель по совокупности критериев. При этом возможно появление парето – оптимальных альтернатив.

Метод длинной регрессии предполагает первоначальное включение в модель всех подозрительных на существенность факторов. Затем какой-либо фактор исключают из модели и анализируют изменение её качества. Если качество улучшится, фактор удаляют и наоборот. При отборе факторов следует обращать внимание на наличие интеркорреляции и мультиколлинеарности.

Сильная корреляция между двумя факторами (интеркорреляция) не позволяет выявить изолированное влияние каждого из них на результативную переменную, то есть затрудняется интерпретация параметров регрессии и они утрачивают истинный экономический смысл. Оценки значений этих параметров становятся ненадёжными и будут иметь большие стандартные ошибки. При изменении объёма наблюдений они могут сильно изменяться, причём не только по величине, но даже и по знаку.

Мультиколлинеарность – явление, когда сильной линейной зависимостью связаны более двух переменных; она приводит к тем же негативным последствиям, о которых только что было сказано. Поэтому, при отборе факторов следует избегать наличия интеркорреляции и, тем более, мультиколлинеарности.

Для обнаружения интеркорреляции и мультиколлинеарности можно использовать анализ матрицы парных коэффициентов корреляции [r (п) ], матрицы межфакторной корреляции [r (11) ] и матрицы частных коэффициентов корреляции [r (ч) ].

Для исключения одного из двух сильно коррелирующих между собой факторов можно руководствоваться таким соображением: из модели бывает целесообразно убрать не тот фактор, который слабее связан с y , а тот, который сильнее связан с другими факторами. Это приемлемо, если связь с y для обоих факторов приблизительно одинакова. При этом возможно наличие парето – оптимальных альтернатив и тогда следует рассмотреть иные аргументы в пользу того или иного фактора.


Матрица [r (11) ] – получается путём вычёркивания первого столбца и первой строки из матрицы [r (п) ].

Матрица [r (11) ] – квадратная и неособенная, ее элементы вычисляются так:

Представляется интересным исследовать определитель det [r (11) ].

Если есть сильная мультиколлинеарность, то почти все элементы этой матрицы близки к единице и det → 0. Если все факторы практически независимы, то в главной диагонали будут стоять величины, близкие к единице, а прочие элементы будут близки к нулю, тогда det→1.

Таким образом, численное значение det [r (11) ] позволяет установить наличие или отсутствие мультиколлинеарности. Мультиколлинеарность может иметь место вследствие того, что какой-либо фактор является линейной (или близкой к ней) комбинацией других факторов.

Для выявления этого обстоятельства можно построить регрессии каждой объясняющей переменной на все остальные. Далее вычисляются соответствующие коэффициенты детерминации

и рассчитывается статистическая значимость каждой такой регрессии по F –статистике:

Критическое значение F определяется по таблице для назначенного уровня значимости γ (вероятности отвергнуть верную гипотезу Н 0 о незначимости R 2), и числа степеней свободы df 1 = p –1, df 2 = n –1.

Оценку значимости мультиколлинеарности можно также произвести путём проверки гипотезы об её отсутствии: Н 0: det [r (11) ] =1. Доказано, что величина: приближённо имеет распределение Пирсона: Если вычисленное значение χ 2 превышает табличное значение для назначенного γ и df = n (n –1)/2, то гипотеза Н 0 отклоняется и мультиколлинеарность считается установленной.

Парные коэффициенты корреляции не всегда объективно показывают действительную связь между факторами. Например, факторы могут по существу явления не быть связаны между собой, но смещаться в одну сторону под влиянием некоторого стороннего фактора, не включенного в модель. Довольно часто таким фактором выступает время. Поэтому включение (если это возможно) в модель переменной t иногда снижает степень интеркорреляции и мультиколлинеарности. Более адекватными показателями межфакторной корреляции являются частные коэффициенты корреляции. Они отражают тесноту статистической связи между двумя переменными при элиминировании влияния других факторов.

Здесь b 1 будет являться несмещенной оценкой параметра β 1 , а b 2 будет несмещенной оценкой нуля (при выполнении условий Гаусса-Маркова).

Утрата эффективности в связи с включением x 2 в случае, когда она не должна быть включена, зависит от корреляции между x 1 и x 2 .

Сравним (см. табл. 4.1).

МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

1. ОТБОР ФАКТОРОВ В МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ОЦЕНКА ПАРАМЕТРОВ МОДЕЛИ

При построении модели множественной регрессии для отображения зависимости между объясняемой переменной Y и независимыми (объясняющими) переменнымиX 1 ,X 2 , …,X k могут использоваться показательная, параболическая и многие другие функции. Однако наибольшее распространение получили модели линейной взаимосвязи, когда факторы входят в модель линейно.

Линейная модель множественной регрессии имеет вид

где k – количество включенных в модель факторов.

Коэффициент регрессии a j показывает, на какую величину в среднем изменится результативный признакY , если переменнуюX j увеличить на единицу измерения, т.е. является нормативным коэффициентом.

Анализ уравнения (1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи уравнения:

где Y – это вектор зависимой переменной размерности, представляющий собойn наблюдений значенийy i ;X – матрицаn наблюдений независимых переменныхX 1 , X 2 , …, X k , размерность матрицыX равна

; а - подлежащий оцениванию вектор неизвестных параметров

Таким образом,

Уравнение (1) содержит значения неизвестных параметров

. Эти величины оцениваются на основе выборочных

наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки.

Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид

Оценка параметров модели множественной регрессии проводится с помощью метода наименьших квадратов. Формулу для вычисления

параметров регрессионного уравнения приведем без вывода:

Отбор факторов, включаемых в регрессию – один из важнейших этапов построения модели регрессии. Подходы к отбору факторов могут быть разные: один из них основан на анализе матрицы коэффициентов парной корреляции, другой – на процедурах пошагового отбора факторов.

Перед построением модели множественной регрессии вычисляются парные коэффициенты линейной корреляции между всеми исследуемыми переменными Y ,X 1 , X 2 , …, X m , и из них формируется матрица

Вначале анализируют коэффициенты корреляции, отражающие тесноту связи зависимой переменной со всеми включенными в анализ факторами, с целью отсева незначимых переменных.

Затем переходят к анализу остальных столбцов матрицы с целью выявления мультиколлинеарности.

Ситуация, когда два фактора связаны между собой тесной линейной связью (парный коэффициент корреляции между ними превышает по абсолютной величине 0,8), называется коллинеарностью факторов . Коллинеарные факторы фактически дублируют друг друга в модели, существенно ухудшая ее качество.

Наибольшие трудности возникают при наличии мультикоминеарности факторов, когда тесной связью одновременно связаны несколько факторов, т.е. когда нарушается одна из предпосылок регрессионного анализа, состоящая в том, что объясняющие переменные должны быть независимы.

Под мультиколлинеарностью понимается высокая взаимная коррелированность объясняющих переменных, которая приводит к линейной зависимости нормальных уравнений. Мультиколлинеарность может

приводит к невозможности решения соответствующей системы нормальных уравнений и получения оценок параметров регрессионной модели;

стохастической , когда между хотя бы двумя объясняющими переменными существует тесная корреляционная связь. В этом случае определитель матрицы не равен нулю, но очень мал. Экономическая интерпретация параметров уравнения регрессии при этом затруднена, так как некоторые из его коэффициентов могут иметь неправильные с точки зрения экономической теории знаки и неоправданно большие значения. Оценки

параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Мультиколлинеарность может возникать в силу разных причин. Например, несколько независимых переменных могут иметь общий временной тренд, относительно которого они совершают малые колебания.

Существует несколько способов для определения наличия или отсутствия мультиколлинеарности:

анализ матрицы коэффициентов парной корреляции. Явление мультиколлинеарности в исходных данных считают установленным, если коэффициент парной корреляции между двумя переменными больше 0,8:

исследование матрицы. Если определитель матрицы близок к нулю, это свидетельствует о наличии мультиколлинеарности.

Для выявления второй ситуации служит тест на мультиколлинеарность Фаррара-Глоубера. С помощью этого теста проверяют, насколько значимо определитель матрицы парных коэффициентов корреляции отличается от единицы. Если он равен нулю, то столбцы матрицыX линейно зависимы и вычислить оценку коэффициентов множественной регрессии по методу наименьших квадратов становится невозможно.

Этот алгоритм содержит три вида статистических критериев проверки наличия мультиколлинеарности:

1) всего массива переменных (критерий «хи-квадрат»);

2) каждой переменной с другими переменными (F -критерий);

3) каждой пары переменных (t -тест).

2) Вычислить наблюдаемое значение статистики Фаррара-Глоубера по формуле

Эта статистика имеет распределение (хи-квадрат).

3) Фактическое значение -критерия сравнить с табличным значением

при 0,5k (k – 1) степенях свободы и уровне значимостиα . ЕслиFG набл больше табличного, то в массиве объясняющих переменных

существует мультиколлинеарность.

2. Проверка наличия мультиколлинеарности каждой переменной другими переменными (F - критерий ):

где c ij – диагональные элементы матрицыC.

3) Фактические значения F -критериев сравнить с табличным значением

при v 1 =k ,v 2 =n – k – 1 степенях свободы и уровне значимостиα , гдеk

– количество факторов. Если F j >F табл , то соответствующая j -я независимая переменная мультиколлинеарна с другими.

3. Проверка наличия мультиколлинеарности каждой пары переменных (t -

тест).

1) Вычислить коэффициент детерминации для каждой переменной:

2) Найти частные коэффициенты корреляции:

где c ij - элемент матрицыС . содержащийся в i -й строке и j -м столбце;c ii иc jj – диагональные элементы матрицыС .

3) Вычислить t -критерии:

4) Фактические значения критериев t ij сравнить с табличнымt табл при (n –

мультиколлинеарность.

Разработаны различные методы устранения или уменьшения мультиколлинеарности. Самый простой из них, но не всегда самый эффективный, состоит в том, что из двух объясняющих переменных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом какую переменную оставить, а какую удалить из анализа, решают исходя из экономических соображений.

Для устранения мультиколлинеарности можно также:

добавить в модель важный фактор для уменьшения дисперсии случайного члена;

изменить или увеличить выборку;

преобразовать мульти коллинеарные переменные и др.

Другой метод устранения или уменьшения мультиколлинеарности – использование стратегии шагового отбора, реализованной в ряде алгоритмов пошаговой регрессии.

Наиболее широкое применение получили следующие схемы построения уравнения множественной регрессии:

метод включения – дополнительное введение фактора;

метод исключения – отсев факторов из полного его набора.

В соответствии с первой схемой признак включается в уравнение в том случае, если его включение существенно увеличивает значение множественного коэффициента корреляции. Это позволяет последовательно отбирать факторы, оказывающие существенное влияние на результативный признак даже в условиях мультиколлинеарности системы признаков, отобранных в качестве аргументов. При этом первым в уравнение включается фактор, наиболее тесно коррелирующий сY вторым – тот фактор, который в паре с первым из отобранных дает максимальное значение множественного коэффициента корреляции, и т.д. Существенно, что на каждом шаге получают новое значение множественного коэффициента (большее, чем на предыдущем шаге); тем самым определяется вклад каждого отобранного фактора в объясненную дисперсиюY.

Вторая схема пошаговой регрессии основана на последовательном исключении факторов с помощью t -критерия. Она заключается в том, что после построения уравнения регрессии и оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьшее по модулю значение t -критерия. После этого получают новое уравнение множественной регрессии и снова производят оценку значимости всех оставшихся коэффициентов регрессии. Если и среди них окажутся незначимые, то опять исключают фактор с наименьшим значением t -критерия. Процесс исключения факторов останавливается на том шаге, при котором все регрессионные коэффициенты значимы.

Ни одна из этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов.

Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а F -критерий меньше табличного значения.

2. ОЦЕНКА КАЧЕСТВА МНОЖЕСТВЕННОЙ РЕГРЕССИИ

Качество модели регрессии проверяется на основе анализа остатков регрессии ε. Анализ остатков позволяет получить представление, насколько хорошо подобрана сама модель и насколько правильно выбран метод опенки коэффициентов. Согласно общим предположениям регрессионного анализа остатки должны вести себя как независимые (в действительности – почти независимые) одинаково распределенные случайные величины.

Исследование полезно начинать с изучения графика остатков. Он может показать наличие какой-то зависимости, не учтенной в модели. Скажем, при подборе простой линейной зависимости междуY иX график

остатков может показать необходимость перехода к нелинейной модели (квадратичной, полиномиальной, экспоненциальной) или включения в модель периодических компонент.

График остатков хорошо показывает и резко отклоняющиеся от модели наблюдения – выбросы. Подобным аномальным наблюдениям надо уделять особо пристальное внимание, так как они могут грубо искажать значения оценок. Чтобы устранить эффект выбросов, надо либо удалить эти точки из анализируемых данных (эта процедура называется цензурированием), либо применять методы оценивания параметров, устойчивые к подобным грубым отклонениям.

Качество модели регрессии оценивается по следующим направлениям:

проверка качества уравнения регрессии;

проверка значимости уравнения регрессии;

анализ статистической значимости параметров модели;

проверка выполнения предпосылок МНК.

Для проверки качества уравнения регрессии вычисляют коэффициент множественной корреляции (индекс корреляции) R и коэффициент детерминацииR 2 . Чем ближе к единице значения этих характеристик, тем выше качество модели.

1. Основные определения и формулы

Множественная регрессия - регрессия между переменными и т.е. модель вида:

где - зависимая переменная (результативный признак);

- независимые объясняющие переменные;

Возмущение или стохастическая переменная, включающая влияние неучтенных в модели факторов;

Число параметров при переменных

Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Уравнение множественной линейной регрессии в случае независимых переменных имеет вид а в случае двух независимых переменных - (двухфакторное уравнение).

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов . Строится система нормальных уравнений:

Решение этой системы позволяет получить оценки параметров регрессии с помощью метода определителей

где - определитель системы;

- частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными правой части системы.

Для двухфакторного уравнения коэффициенты множественной линейной регрессии можно вычислить по формулам:

Частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности :

Средние коэффициентами эластичности показывают на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%:

Их можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.

Тесноту совместного влияния факторов на результат оценивает коэффиц и ент (индекс) множественной корреляции :

Величина индекса множественной корреляции лежит в пределах от 0 до 1 и должна быть больше или равна максимальному парному индексу корреляции:

Чем ближе значение индекса множественной корреляции к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

Сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности (величина индекса множественной корреляции существенно отличается от индекса парной корреляции) включения в уравнение регрессии того или иного фактора.

При линейной зависимости совокупный коэффициент множественной ко р реляции определяется через матрицу парных коэффициентов корреляции:

где - определитель матрицы парных коэффициентов корреляции;

- определитель матрицы межфакторной корреляции.

Частны е коэффициент ы корреляции характеризуют тесноту линейной зависимости между результатом и соответствующим фактором при устранении влияния других факторов. Если вычисляется, например, (частный коэффициент корреляции между и при фиксированном влиянии ), это означает, что определяется количественная мера линейной зависимости между и которая будет иметь место, если устранить влияние на эти признаки фактора

Частные коэффициенты корреляции, измеряющие влияние на фактора при неизменном уровне других факторов, можно определить как:

или по рекуррентной формуле:

Для двухфакторного уравнения:

или

Частные коэффициенты корреляции изменяются в пределах от -1 до +1.

Сравнение значений парного и частного коэффициентов корреляции показывает направление воздействия фиксируемого фактора. Если частный коэффициент корреляции получится меньше, чем соответствующий парныйкоэффициент значит взаимосвязь признаков и в некоторой степени обусловлена воздействием на них фиксируемой переменной И наоборот, большее значение частного коэффициента по сравнению с парным свидетельствует о том, что фиксируемая переменная ослабляет своим воздействием связь и

Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например, - коэффициент частной корреляции первого порядка.

Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент мн о жественной корреляции :

Качество построенной модели в целом оценивает коэффициент (индекс) множественной детерминации , который рассчитывается как квадрат индекса множественной корреляции: Индекс множественной детерминации фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как

Если число параметров при близко к объему наблюдений, то коэффициент множественной корреляции приблизится к единице даже при слабой связи факторов с результатом. Для того чтобы не допустить возможногопреувеличения тесноты связи, используется скорректированный индекс множественной корреляции , который содержит поправку на число степеней свободы:

Чем больше величина тем сильнее различия и

Значимость частных коэффициентов корреляции проверяется аналогично случаю парных коэффициентов корреляции. Единственным отличием является число степеней свободы, которое следует брать равным =--2.

Значимость уравнения множественной регрессии в целом , так же как и в парной регрессии, оценивается с помощью - критерия Фишера :

Мерой для оценки включения фактора в модель служит частный -критерий . В общем виде для фактора частный -критерий определяется как

Для двухфакторного уравнения частные -критерии имеют вид:

Если фактическое значение превышает табличное, то дополнительное включение фактора в модель статистически оправданно и коэффициент чистой регрессии при факторе статистически значим. Если же фактическое значение меньше табличного, то фактор нецелесообразно включать в модель, а коэффициент регрессии при данном факторе в этом случае статистически незначим.

Для оценки значимости коэффициентов чистой регрессии по -критерию Стьюдента используется формула:

где - коэффициент чистой регрессии при факторе

- средняя квадратическая (стандартная) ошибка коэффициента регрессии которая может быть определена по формуле:

При дополнительном включении в регрессию нового фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться. Если это не так, то включаемый в анализ новый фактор не улучшает модель и практически является лишним фактором. Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по -критерию Стьюдента.

При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

Для оценки мультиколлинеарности факторов может использоваться опред е литель матрицы между факторами . Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель, тем меньше мультиколлинеарность факторов.

Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это означает, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность . При нарушении гомоскедастичности выполняются неравенства

Наличие гетероскедастичности можно наглядно видеть из поля корреляции (рис. 9.22).

Рис. 9.22 . Примеры гетероскедастичности:

а) дисперсия остатков растет по мере увеличения

б) дисперсия остатков достигает максимальной величины при средних значениях переменной и уменьшается при минимальных и максимальных значениях

в) максимальная дисперсия остатков при малых значениях и дисперсия остатков однородна по мере увеличения значений

Для проверки выборки на гетероскедастичность можно использовать метод Гольдфельда-Квандта (при малом объеме выборки) или критерий Бартлетта (при большом объеме выборки).

Последовательность применения теста Гольдфельда-Квандта :

1) Упорядочить данные по убыванию той независимой переменной, относительно которой есть подозрение на гетероскедастичность.

2) Исключить из рассмотрения центральных наблюдений. При этом где - число оцениваемых параметров. Из экспериментальных расчетов для случая однофакторного уравнения регрессии рекомендовано при =30 принимать =8, а при =60 соответственно =16.

3) Разделить совокупность из наблюдений на две группы (соответственно с малыми и большими значениями фактора ) и определить по каждой из групп уравнение регрессии.

4) Вычислить остаточную сумму квадратов для первой и второй групп и найти их отношение где При выполнении нулевой гипотезы о гомоскедастичности отношение будет удовлетворять -критерию Фишера со степенями свободы для каждой остаточной суммы квадратов. Чем больше величина превышает тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

Если необходимо включить в модель факторы, имеющие два или более качественных уровней (пол, профессия, образование, климатические условия, принадлежность к определенному региону и т.д.), то им должны быть присвоены цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные называют фиктивными (и с кусственными) переменными .

К оэффициент регрессии при фиктивной переменной интерпретируется как среднее изменение зависимой переменной при переходе от одной категории к другой при неизменных значениях остальных параметров. Значимость влияния фиктивной переменной проверяется с помощью -критерия Стьюдента.

2. Решение типовых задач

Пример 9. 2. По 15 предприятиям отрасли (табл. 9.4) изучается зависимость затрат на выпуск продукции (тыс. ден. ед.) от объема произведенной продукции (тыс. ед.) и расходов на сырье (тыс. ден. ед). Необходимо:

1) Построить уравнение множественной линейной регрессии.

2) Вычислить и интерпретировать:

Средние коэффициенты эластичности;

Парные коэффициенты корреляции, оценить их значимость на уровне 0,05;

Частные коэффициенты корреляции;

Коэффициент множественной корреляции, множественный коэффициент детерминации, скорректированный коэффициент детерминации.

3) Оценить надежность построенного уравнения регрессии и целесообразность включения фактора после фактора и после

Таблица 9.4

x 1

x 2

Решение:

1) В Excel составим вспомогательную таблицу рис. 9.23.

Рис. 9.23 . Расчетная таблица многофакторной регрессии.

С помощью встроенных функций вычислим: =345,5; =13838,89; =8515,78; =219,315; =9,37; =6558,08.

Затем найдем коэффициенты множественной линейной регрессии и оформим вывод результатов как на рис. 9.24.

Рис. 9.24 . Решение задачи в MS Excel

Для вычисления значения коэффициента используем формулы

Формулы для вычисления параметров заносим в ячейки Е 20 , Е 2 1, Е 2 2. Так длявычисления параметра b 1 в Е 20 поместим формулу =(B20*B24-B21*B22)/(B23*B24-B22^2) и получим 29,83. Аналогично получаем значения =0,301 и Коэффициент =-31,25 (рис. 9.25.).

Рис. 9.25 . Вычисление параметров уравнения множественной регрессии (в с т роке формул формула для расчета b 2) .

Уравнение множественной линейной регрессии примет вид:

31,25+29,83+0,301

Таким образом, при увеличении объема произведенной продукции на 1 тыс. ед. затраты на выпуск этой продукции в среднем увеличатся на 29,83 тыс. ден. ед., а при увеличении расходов на сырье на 1 тыс. ден. ед. затраты увеличатся в среднем на 0,301 тыс. ден. ед.

2) Для вычисления средних коэффициентов эластичности воспользуемся формулой: Вычисляем: =0,884 и =0,184. Т.е. увеличение только объема произведенной продукции (от своего среднего значения) или только расходов на сырье на 1% увеличивает в среднем затраты на выпуск продукции на 0,884% или 0,184% соответственно. Таким образом, фактор оказывает большее влияние на результат, чем фактор

Для вычисления парных коэффициентов корреляции воспользуемся функцией «КОРРЕЛ» рис. 9.26.

Рис. 9.26 . Вычисление парных коэффициентов корреляции

Значения парных коэффициентов корреляции указывают на весьма тесную связь с и на тесную связь с В то же время межфакторная связь очень сильная (=0,88>0,7), что говорит о том, что один из факторов является неинформативным, т.е. в модель необходимо включать или или

З начимост ь парных коэффициентов корреляции оценим с помощью -критерия Стьюдента. =2,1604 определяем с помощью встроенной статистической функции СТЬЮДРАСПОБР взяв =0,05 и =-2=13.

Фактическое значение -критерия Стьюдента для каждого парного коэффициента определим по формулам: . Результат расчета представлен на рис. 9.27.

Рис. 9.27 . Результат расчета фактических значений -критерия Стьюдента

Получим =12,278; =7,1896; =6,845.

Так как фактические значения -статистики превосходят табличные, то парные коэффициенты корреляции не случайно отличаются от нуля, а статистически значимы.

Получим =0,81; =0,34; =0,21. Таким образом, фактор оказывает более сильное влияние на результат, чем

При сравнении значений коэффициентов парной и частной корреляции приходим к выводу, что из-за сильной межфакторной связи коэффициенты парной и частной корреляции отличаются довольно значительно.

Коэффициент множественной корреляции

Следовательно, зависимость от и характеризуется как очень тесная, в которой =93% вариации затрат на выпуск продукции определяются вариацией учтенных в модели факторов: объема произведенной продукции и расходов на сырье. Прочие факторы, не включенные в модель, составляют соответственно 7% от общей вариации

Скорректированный коэффициент множественной детерминации =0,9182 указывает на тесную связь между результатом и признаками.

Рис. 9.28 . Результаты расчета частных коэффициентов корреляции и коэфф и циента множественной корреляции

3) Оценим надежность уравнения регрессии в целом с помощью -критерия Фишера. Вычислим . =3,8853 определяем взяв =0,05, =2, =15-2-1=12 помощью встроенной статистической функции FРАСПОБР с такими же параметрами.

Так как фактическое значение больше табличного, то с вероятностью 95% делаем заключение о статистической значимости уравнения множественной линейной регрессии в целом.

Оценим целесообразность включения фактора после фактора и после с помощью частного -критерия Фишера по формулам

; .

Для этого в ячейку B32 заносим формулу для расчета F x 1 «=(B28- H24^2)*(15-3)/(1-B28) », а в ячейку B 33 формулу для расчета F x 2 «=(B28-H23^2)*(15-3)/(1-B28) », результат вычисления F x 1 = 22,4127, F x 2 = 1,5958. Табличное значение критерия Фишера определим с помощью встроенной функции FРАСПОБР с параметрами =0,05, =1, =12 «=FРАСПОБР(0,05; 1 ;12) », результат - =4,747. Так как =22,4127>=4,747, а =1,5958<=4,747, то включение фактора в модель статистически оправдано и коэффициент чистой регрессии статистически значим, а дополнительное включение фактора после того, как уже введен фактор нецелесообразно (рис. 9.29).

Рис. 9.29 . Результаты расчета критерия Фишера

Низкое значение (немногим больше 1) свидетельствует о статистической незначимости прироста за счет включения в модель фактора после фактора Это означает, что парная регрессионная модель зависимости затрат на выпуск продукции от объема произведенной продукции является достаточно статистически значимой, надежной и что нет необходимости улучшать ее, включая дополнительный фактор (расходы на сырье).

3. Дополнительные сведения для решения задач с помощью MS Excel

Сводные данные основных характеристик для одного или нескольких массивов данных можно получить с помощью инструмента анализа данных Опис а тельная статистика . Порядок действий следующий:

1. Необходимо проверить доступ к Пакету анализа . Для этого в ленте выбираем вкладку «Данные», в ней раздел «Анализ» (рис. 9.30.).

Рис. 9.30 . Вкладка данные диалоговое окно «Анализ данных»

2. В диалоговом окне «Анализ данных» выбрать Описательная стат и стика и нажать кнопку «ОК», в появившемся диалоговом окне заполните необходимые поля (рис. 9.31):

Рис. 9.31 . Диалоговое окно ввода параметров инструмента
« Описательная статистика »

Входной интервал - диапазон, содержащий данные результативного и объясняющих признаков;

Группирование - указать, как расположены данные (в столбцах или строках);

Метки - флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Выходной интервал - достаточно указать левую верхнюю ячейку будущего диапазона;

Новый рабочий лист - можно задать произвольное имя нового листа, на который будут выведены результаты.

Для получения информации Итоговой статистики, Уровня наде ж ности, -го наибольшего и наименьшего значений нужно установить соответствующие флажки в диалоговом окне.

Получаем следующую статистику (рис. 2.10).

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономических переменных контролировать нельзя, т. е. не удается обеспечить равенство всех прочих условий для оценки влияния одного исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. построить уравнение множественной регрессии:

Такого рода уравнение может использоваться при изучении потребления. Тогда коэффициенты - частныепроизводные потребления по соответствующим факторам :

в предположении, что все остальные постоянны.

В 30-е гг. XX в. Кейнс сформулировал свою гипотезу потребительской функции. С того времени исследователи неоднократно обращались к проблеме ее совершенствования. Современная потребительская функция чаще всего рассматривается как модель вида:

где С - потребление; у - доход; Р - цена, индекс стоимости жизни; М - наличные деньги; Z - ликвидные активы.

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций; при изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов эконометрики. Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Построение уравнения множественной регрессия начинается с решения вопроса о спецификации модели. Спецификация модели включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Требования к факторам.

1 Они должны быть количественно измеримы.

2.Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Разновидностью интеркоррелированности факторов является мультиколлинеарность - наличие высокой линейной связи между всеми или несколькими факторами.

Причинами возникновения мультиколлинеарности между призанками являются:

1. Изучаемые факторные признаки, характеризуют одну и ту же сторону явления или процесса. Например, показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;

2. Использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину;

3. Факторные признаки, являющиеся составными элементами друг друга;

4. Факторные признаки, по экономическому смыслу дублирующие друг друга.

5. Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0,8 (rxi xj) и др.

Мультиколлинеарность может привести к нежелательным последствиям:

1) оценки параметров становятся ненадежными, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только в величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;

3) нельзя определить изолированное влияние факторов на результативный показатель.

Включение в модель факторов с высокой интеркорреляцией (Ryx1Rx1x2) может привести к ненадежности оценок коэф-ов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретированными. Включаемые во множ.регрессию факторы должны объяснить вариацию независимой переменной. Отбор факторов производится на основе качественного теоретико-экономического анализа, который обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Если факторы коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.


© 2024
reaestate.ru - Недвижимость - юридический справочник